
Disproving (Positive) Almost-Sure Termination of
Probabilistic Term Rewriting via Random Walks⋆

Jan-Christoph Kassing , Henri Nagel , Alexander Schlecht , and Jürgen Giesl

RWTH Aachen University, Aachen, Germany

Abstract. In recent years, numerous techniques were developed to auto-
matically prove termination of different kinds of probabilistic programs.
However, there are only few automated methods to disprove their termina-
tion. In this paper, we present the first techniques to automatically disprove
(positive) almost-sure termination of probabilistic term rewrite systems.
Disproving termination of non-probabilistic systems requires finding a finite
representation of an infinite computation, e.g., a loop of the rewrite system.
We extend such qualitative techniques to probabilistic term rewriting, where
a quantitative analysis is required. In addition to the existence of a loop, we
have to count the number of such loops in order to embed suitable random
walks into a computation, thereby disproving termination. To evaluate their
power, we implemented all our techniques in the tool AProVE.

1 Introduction

While termination is undecidable in general, automatic techniques to prove termina-
tion are crucial in many applications. However, proving non-termination is equally
important, e.g., to detect bugs in programs. While termination and non-termination
of ordinary programs has been studied for decades, the work on automated ter-
mination analysis of probabilistic programs is quite recent. Such programs may
have probabilistic choices, which allow the program to proceed in several different
ways. Probabilistic programming is used to deal with uncertainty in data and has
applications in many areas such as machine learning and Bayesian inference [18].

In the probabilistic setting, requiring all executions to be finite is a hard
restriction. Instead, one usually considers less restrictive notions of termination like
(positive) almost-sure termination. A program is almost-surely terminating (AST)
if every computation terminates with probability 1. A strictly stronger notion is
positive AST (PAST) [5, 36], where every computation must have a finite expected
number of steps. It is well known that PAST implies AST but not vice versa.

Term rewriting [2] is a fundamental concept to transform and evaluate expres-
sions, and techniques to analyze termination of term rewrite systems (TRSs) are
used for termination analysis of programs in many languages. Term rewriting was
adapted to the probabilistic setting in [1, 4, 5]. While techniques to automatically
prove AST and PAST of probabilistic TRSs (PTRSs) were developed in [1, 24–27],
up to now there were no approaches for non-termination of PTRSs. In this paper,
we develop the first techniques to automatically disprove AST and PAST of PTRSs.
⋆ funded by the DFG Research Training Group 2236 UnRAVeL

http://orcid.org/0009-0001-9972-2470
http://orcid.org/0009-0001-9469-4618
http://orcid.org/0009-0004-3580-2764
http://orcid.org/0000-0003-0283-8520

2 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

Contribution. We introduce a general approach to disprove termination of
PTRSs by embedding non-terminating random walks into rewrite sequences of
PTRSs (Thm. 6). First, we embed random walks via occurrences of loops (Thm. 10,
14, and 16), which were previously used to disprove termination of TRSs, see, e.g.,
[14]. Second, we embed random walks via looping pattern terms (Thm. 27), which
were previously used to prove non-looping non-termination of TRSs [10]. While the
original techniques were qualitative (find the existence of a loop), the probabilistic
setting requires quantitative analyses (find the number of possible loops). We develop
a dynamic programming algorithm (Alg. 1) to solve the counting problems that
arise in this setting, e.g., to determine how many instantiations of a term t occur
in a term s at orthogonal positions. We implemented all our techniques in the tool
AProVE and perform an experimental evaluation to demonstrate their applicability.

Related Work. Techniques to prove non-termination of non-probabilistic term
rewriting have been developed for decades, see, e.g., [10, 11, 14, 34, 35]. Tools
analyzing (non-)termination of TRSs participate annually in the Termination
Competition (TermComp) [16]. A related problem to proving non-termination is
analyzing reachability (or (in)feasibility). Techniques for analyzing reachability in
term rewriting were presented in, e.g., [21, 32, 38, 43].

For imperative programs, there are also numerous techniques for proving non-
termination, e.g., [7, 9, 12, 13, 20, 28, 30], and tools for termination analysis of im-
perative programs compete annually in TermComp and in the software verification
competition (SV-COMP) [3]. In addition to specific techniques for non-termination,
there also exist decision procedures for termination on certain subclasses of pro-
grams, e.g., [6, 22, 23, 31, 40, 42]. To automatically disprove AST or PAST, we
are only aware of approaches for probabilistic imperative programs: there exists
a technique via repulsing supermartingales [8], and a technique via fixpoints and
Park induction [39]. Based on [8], martingale-based proof rules which can also
disprove AST and PAST were implemented in the tool Amber [33].

The most common non-termination technique for TRSs is the detection of loops.
Thus, to disprove AST or PAST of probabilistic term rewriting, in this work we
lift the idea of disproving termination via loops to the probabilistic setting, and
consider embeddings based on loops.

Structure. We present preliminaries on probability theory, random walks, and
(probabilistic) term rewriting in Sect. 2. Then, we introduce our novel approach
to disprove termination of PTRSs via an embedding of random walks in Sect. 3.
More precisely, in Sect. 4 we show how to embed random walks based on loops and
develop a dynamic programming algorithm to solve the arising counting problems
for occurrences of terms. In Sect. 5, we show how to embed random walks based
on looping pattern terms. We evaluate our implementation and conclude in Sect. 6.
The proofs of our results can be found in App. A.

2 Preliminaries

In Sect. 2.1, we start with basic concepts of probability theory and define the
notion of a random walk (program). Then, we recapitulate ordinary term rewriting
in Sect. 2.2, and probabilistic term rewriting in Sect. 2.3.

Disproving Termination of PTRSs via Random Walks 3

2.1 Probability Theory and Random Walks

We start by recapitulating random walk programs (without direct termination) as in
[17], which we will use as lower bounds to disprove (positive) almost-sure termination
of probabilistic term rewrite systems in Sect. 4 and 5. For an introduction to general
random walks, see, e.g., [19, 29, 37].

In probability theory, one wants to assign probabilities to possible outcomes α ∈
Ω of a random process. Since assigning probabilities to individual outcomes is often
not feasible, one considers a set of events A ⊆ 2Ω instead, where an event is a subset
of outcomes, and assigns probabilities to each event. Such an event space A has to
contain Ω itself and it must be closed under complement and countable unions.
The pair (Ω,A) is called a measurable space. A probability space (Ω,A,P) extends a
measurable space (Ω,A) by a probability measure P which maps every event from A
to a probability between 0 and 1 such that P(Ω) = 1, P(∅) = 0, and P(

⊎
i≥0 Ai) =∑

i≥0 P(Ai) for every family of pairwise disjoint events Ai ∈ A. As in [17], we use
the measurable space (Zω,Acyl) on infinite words defined by the typical cylinder
construction used in MDP theory. We call the possible outcomes α ∈ Zω runs and
a finite word α ∈ Z∗ a prefix run. Let α(i) denote the number at position i in α.

A random walk (program) µ is a function µ : Z → R≥0 whose support Supp(µ) =
{x ∈ Z | µ(x) > 0} is finite and satisfies

∑
x∈Supp(µ) µ(x) = 1. The function µ

represents the transition relation of a random walk on Z. If the current value of the
random walk is y > 0, then for any x ∈ Z, µ(x) is the probability that the random
walk transitions from y to y + x. We stop when we reach a number ≤ 0 and do
not perform any transition steps anymore.1 For a prefix run α ∈ Z∗, let ⟨α⟩ ⊆ Zω

denote the set of all infinite words that have α as prefix (called a cylinder set).
The probability measure Pµ

x0
(given some start value x0 ∈ Z) of a random walk is

defined on the event space Acyl = {⟨α⟩ | α ∈ Z∗}, i.e., on the cylinder sets ⟨α⟩ of
all prefix runs α. Given a finite word α = α(0) . . . α(k), we define Pµ

x0
(⟨α⟩) = 0 if

α(0) ̸= x0, and Pµ
x0
(⟨α⟩) =

∏∞
i=0 µ(α(i+ 1)− α(i)) otherwise.

Depending on µ and its expected value E (µ) =
∑

x∈Supp(µ) x · µ(x), we charac-
terize four different types of random walks:

1. If µ(0) = 1, then µ is a loop walk.
2. If µ(0) < 1 and E (µ) = 0, then µ is a symmetric random walk.
3. If µ(0) < 1 and E (µ) > 0, then µ is a positively biased random walk.
4. If µ(0) < 1 and E (µ) < 0, then µ is a negatively biased random walk.

In Fig. 1 one can see examples for all four different types, where we start at x0 = 1.
We are interested in the probability of termination and in the expected number

of steps it takes to terminate. The random walk µ certainly terminates if there is
no infinite word α such that α(i) > 0 and µ(α(i+1)−α(i)) > 0 holds for all i ∈ N.
This only holds if we have µ(x) = 0 for all x ≥ 0. Since this is a rather restrictive
requirement, we are more interested in the probability of termination. We say that a
run α terminates if there exists an n ∈ N such that α(n) ≤ 0, and the termination
length |α| is defined as the smallest such n. Let ⟨SN⟩ =

⊎
n∈N

⊎
α∈Zω,|α|=n⟨α⟩ be the

event of all terminating runs. (Here, as usual, “SN” stands for “strong normalization”,
which is equivalent to “termination”.) Then the probability of termination of a
1 Ordinary random walks [37] do not stop and are identically distributed everywhere.

4 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

µ1(0) = 1

0 1 2

1

(a) Loop Walk µ1

µ2(−1) = 1/3

µ2(0) = 1/3

µ2(1) = 1/30 1 2

1/3

1/3

1/3

(b) Symmetric Random Walk µ2

µ3(−1) = 1/3

µ3(1) = 2/3

0 1 2

2/31/3

(c) Positively Biased Random Walk µ3

µ4(−1) = 2/3

µ4(1) = 1/3

0 1 2

1/32/3

(d) Negatively Biased Random Walk µ4

Fig. 1: Four Different Random Walks µ1, µ2, µ3, and µ4

random walk µ starting in x0 is Pµ
x0
(⟨SN⟩) =

∑
n∈N

∑
α∈Zω,|α|=n Pµ

x0
(⟨α⟩).

A random walk µ is almost-surely terminating (AST) if we have Pµ
x0
(⟨SN⟩) = 1

for all x0 ∈ Z. In addition, one is also interested in the expected number of steps it
takes to terminate. We define the expected derivation length edl(µ, x0) ∈ R≥0∪{∞}
of a random walk µ starting in x0 as edl(µ, x0) = ∞ if µ is not AST, and otherwise,
as edl(µ, x0) =

∑
n∈N

∑
α∈Zω,|α|=n n · Pµ

x0
(⟨α⟩). A random walk µ is positively

almost-surely terminating (PAST) if we have edl(µ, x0) < ∞ for all x0 ∈ Z.
With this characterization, as in [17, Thm. 18], classical results on random

walks [37] yield the following classification w.r.t. AST and PAST.

Theorem 1 (AST and PAST of Random Walks). Let µ be a random walk.

1. If µ is a loop walk, then µ is neither AST nor PAST.
2. If µ is a positively biased random walk, then µ is neither AST nor PAST.
3. If µ is a symmetric random walk, then µ is AST but not PAST.
4. If µ is a negatively biased random walk, then µ is AST and PAST.

Example 2. Based on Thm. 1, µ1 and µ3 are neither AST nor PAST. The random
walk µ2 is AST but not PAST, and µ4 is both AST and PAST.

2.2 Rewriting

Next, we recapitulate abstract rewriting and term rewriting, see, e.g., [2]. An
abstract reduction system (ARS) on a set A is a binary relation → ⊆ A×A. Instead
of (a, b) ∈ → one writes a → b to indicate that b is a direct successor of a. For
any such relation → and any n ∈ N, we define →n as →0 = {(a, a) | a ∈ A}
and →n+1 = →n ◦ →, where “◦” denotes composition of relations. Moreover,
→∗=

⋃
n∈N →n and →+=

⋃
n∈N>0

→n. Let NF→ denote the set of all objects that
are in normal form w.r.t. →, i.e., a ∈ NF→ if there is no b ∈ A with a → b.

The set T (Σ,V) of all terms over a finite set of function symbols Σ =
⊎

k∈N Σk

and an infinite set of variables V is the smallest set with V ⊆ T (Σ,V), and if
f ∈ Σk and t1, . . . , tk ∈ T (Σ,V), then f(t1, . . . , tk) ∈ T (Σ,V). If Σ and V are
clear from the context, we just write T instead of T (Σ,V). For example, gt(s(x), 0)
is a term over a signature where gt has arity 2, s has arity 1, and 0 has arity 0. A
substitution is a function σ : V → T (Σ,V) where dom(σ) = {x ∈ V | σ(x) ̸= x}
is finite, and we often write xσ instead of σ(x). If dom(σ) = {x1, . . . , xn} and
xi = si for all 1 ≤ i ≤ n, then we also write σ = [x1/s1, . . . , xn/sn]. Substitutions

Disproving Termination of PTRSs via Random Walks 5

homomorphically extend to terms: if t = f(t1, . . . , tk) ∈ T then tσ = f(t1σ, . . . , tkσ).
Thus, for a substitution σ with xσ = s(0) we obtain s(x)σ = s(s(0)). For any term
t ∈ T , the set of positions Pos(t) is the smallest subset of N∗ with ε ∈ Pos(t), and if
t = f(t1, . . . , tk) then for all 1 ≤ j ≤ k and all π ∈ Pos(tj) we have j.π ∈ Pos(t). By
PosX(t) ⊆ Pos(t) we denote all positions of symbols or variables from X ⊆ Σ ∪ V
in t. A position π1 is above π2 if π1 is a (not necessarily proper) prefix of π2. If π1

is not above π2 and π2 is not above π1, then they are called orthogonal (denoted
π1⊥π2). If π ∈ Pos(t) then t|π denotes the subterm starting at position π and t[r]π
denotes the term that results from replacing the subterm t|π at position π with the
term r ∈ T . We write t ⊴ s if t is a subterm of s and t ◁ s if t is a proper subterm
of s (i.e., if t ⊴ s and t ≠ s). For example, we have Pos(gt(s(x), 0)) = {ε, 1, 1.1, 2},
gt(s(x), 0)|2 = 0, gt(s(x), 0)[s(y)]2 = gt(s(x), s(y)), and s(y) ◁ gt(s(x), s(y)). A
context C is a term from T (Σ ⊎ {□},V) which contains exactly one occurrence of
the constant □ (called “hole”). If C|π = □, then C[s] is a shorthand for C[s]π.

A term rewrite rule ℓ → r is a pair of terms (ℓ, r) ∈ T ×T such that V(r) ⊆ V(ℓ)
and ℓ /∈ V, where V(t) is the set of all variables occurring in t ∈ T . A term rewrite
system (TRS) R is a finite set of term rewrite rules, and it induces an ARS (T ,→R)
on terms where s →R t holds if there is a π ∈ Pos(s), a rule ℓ → r ∈ R, and a
substitution σ such that s|π = ℓσ and t = s[rσ]π. We sometimes simply refer to R
instead of →R. As an example, the following TRS Rgt computes the “greater than”
function on natural numbers (represented by 0 and the successor function s).

gt(s(x), s(y)) → gt(x, y) gt(s(x), 0) → true gt(0, y) → false

Here, we have gt(s(0), s(0)) →Rgt gt(0, 0) →Rgt false, where false ∈ NFRgt .

2.3 Probabilistic Rewriting

A probabilistic ARS has finite multi-distributions on the right-hand sides of its
rewrite rules. A finite multi-distribution µ on a set A ̸= ∅ is a finite multiset of
pairs (p : a), where 0 < p ≤ 1 is a probability and a ∈ A, such that

∑
(p:a)∈µ p = 1.

Let FDist(A) denote the set of all finite multi-distributions on A. For µ ∈ FDist(A),
its support is the multiset Supp(µ) = {a | (p : a)∈ µ for some p}. A probabilistic
abstract reduction system (PARS) is a pair (A,→) such that → ∈ A× FDist(A).

A probabilistic term rewrite rule ℓ → µ is a pair (ℓ, µ) ∈ T × FDist(T) such
that ℓ ̸∈ V and V(r) ⊆ V(ℓ), and a probabilistic TRS (PTRS) is a finite set of
probabilistic term rewrite rules. Similar to TRSs, a PTRS P induces a PARS
(T ,→P) with s →P {p1 : t1, . . . , pk : tk} if there is a position π ∈ Pos(s), a rule
ℓ → {p1 : r1, . . . , pk : rk} ∈ P, and a substitution σ such that s|π = ℓσ and
tj = s[rjσ]π for all 1 ≤ j ≤ k. Again, we sometimes refer to P instead of →P .
Consider the PTRS Pgeo with the only rule geo(x) → {1/2 : geo(s(x)), 1/2 : x}.
When starting with the term geo(0), repeated rewriting yields sk(0) (representing
k ∈ N) with a probability of (1/2)k+1, i.e., a geometric distribution.

To track rewrite sequences of a PARS (A,→) with their probabilities, we
consider (possibly infinite) rewrite sequence trees (RSTs) [27]. The nodes v of a →-
RST are labeled by pairs (pv : av) of a probability pv ∈ (0, 1] and an object av ∈ A,
where the probability at the root is 1. For each node v with successors w1, . . . , wk,

6 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

1 geo(0) 1/2 geo(s(0))

1/2 0 NFPgeo

1/4 geo(s(s(0)))

1/4 s(0) NFPgeo

. . .

1/8 s(s(0)) NFPgeo

v

Fig. 2: A Pgeo-RST T with root(T) = geo(0) and h(T) = ω. The node v is labeled
by the probability pv = 1/8 and the term av = s(s(0)), and it has depth d(v) = 3.

the edge relation represents a rewrite step, i.e., av → {pw1

pv
: aw1

, . . . ,
pwk

pv
: awk

}.
For a →-RST T, V (T) denotes its set of nodes, root(T) is the object at its root,
and Leaf(T) denotes its set of leaves. The depth d(v) of a node v ∈ V (T) is
the number of steps it takes to reach v from the root. The height of a tree T is
h(T) = supv∈V (T) d(v) ∈ N ∪ {ω}. An example for a Pgeo-RST is shown in Fig. 2.

For a →-RST T, its termination probability is |T| =
∑

v∈Leaf(T) pv. A PARS
(A,→) is almost-surely terminating (AST) if |T| = 1 holds for all →-RSTs T, i.e., if
the probability of termination is always 1. However, AST is not sufficient to guarantee
that the expected number of rewrite steps is finite. The expected derivation length of
a →-RST T is edl(T) = ∞ if |T| < 1, and edl(T) =

∑
v∈Leaf(T) d(v) · pv, otherwise.

For the Pgeo-RST T in Fig. 2 we obtain edl(T) = 1 ·1/2+2 ·1/4+3 ·1/8+ . . . = 2, so in
expectation we perform 2 rewrite steps. A PARS (A,→) is positively almost-surely
terminating (PAST) if edl(T) is finite for all →-RSTs T. These notions of AST and
PAST for PARSs are equivalent to the ones in [1, 5, 24] where AST and PAST are
defined via a lifting of → to multisets or via stochastic processes.

3 Disproving AST and PAST via Loops and Embeddings

The most common approach to disprove termination of a TRS R is by finding loops.
A loop is a sequence t →+

R C[tσ] for some term t, context C, and substitution
σ. Indeed, such a loop gives rise to an infinite rewrite sequence t →n

R C[tσ] →n
R

C[C[tσ]σ] →R . . . for some n ∈ N>0. However, to disprove AST or PAST of a PTRS
P, it is not sufficient to find a loop in the non-probabilistic variant np(P) = {ℓ →
r | ℓ → µ ∈ P, r ∈ Supp(µ)}.
Example 3. Consider the PTRS P1 with the rule g(x) → {2/3 : x, 1/3 : g(g(x))}
modeling a negatively biased random walk on the number of g’s. Here, np(P1)
contains the two rules g(x) → x and g(x) → g(g(x)). The latter gives rise to the
loop g(x) → C[g(x)σ] with C = g(□) and the identity substitution σ. However, P1

corresponds to the random walk µ4 from Fig. 1, and thus, it is PAST.

Instead of np(P), one has to consider P-RSTs. If there is a P-RST with root t
and an instance of t in every leaf, then P is not AST and thus, also not PAST.

Theorem 4 (Disproving AST via Loops). Let P be a PTRS and T be a P-RST
with h(T) > 0 such that root(T) = t and for every v ∈ Leaf(T) there is a context
Cv and a substitution σv such that tv = Cv[tσv]. Then P is neither AST nor PAST.

However, Thm. 4 can only be used to disprove AST for a very restricted class of
PTRSs. To handle more complicated examples, instead of requiring that a looping
term t occurs in every leaf of a P-RST, one has to find a PARS (A,→) and a
→-RST T where it is known that |T| < 1 (to disprove AST) or edl(T) = ∞ (to
disprove PAST) holds. In addition, one has to find a P-RST T′ and an embedding

Disproving Termination of PTRSs via Random Walks 7

e : V (T) → V (T′) which ensures |T′| ≤ |T| and edl(T) ≤ edl(T′). If |T| < 1, then
we have disproven AST of P , and if edl(T) = ∞, then we have disproven PAST of P .

Definition 5 (RST-Embedding). Let i ∈ {1, 2}, let (Ai,→i) be a PARS,
and let Ti be a →i-RST. An embedding from T1 to T2 is an injective mapping
e : V (T1) → V (T2) such that pv = pe(v) for all v ∈ V (T1) (the probability of v in
T1 and the probability of its image e(v) in T2 are the same) and if there is a path
from a node v to w in T1, then there is a path from e(v) to e(w) in T2 as well.

Theorem 6 (Lower Bounds via Embeddings). Let (A1,→1) and (A2,→2)
be two PARSs, and let Ti be a →i-RST for i ∈ {1, 2} such that there exists an
embedding from T1 to T2. Then, |T2| ≤ |T1| and edl(T1) ≤ edl(T2).

4 Embedding Random Walks Based on Term Occurrences

To embed symmetric or even positively biased random walks, we again search for a
loop where t rewrites to C[tσ], but now we also consider the probabilities and the
number of loops represented by the right-hand side C[tσ].

Example 7. Consider the PTRS P2 with the rule g(x) → {2/3 : x, 1/3 : g(g(g(x)))}
modeling a symmetric random walk on the number of g’s, because their number
increases in each rule application by 2/3 · (−1) + 1/3 · 2 = 0 in expectation. While
P1 from Ex. 3 is PAST, P2 is not. The difference is that the symbol g occurs three
instead of two times in the second choice of the distribution on the right-hand side.

Ex. 7 illustrates that it is important how often a looping term like g(x) occurs
on the right-hand side. In this example, the three subterms of g(g(g(x))) that
are instantiations of g(x) can indeed be counted separately, because they do not
overlap at a non-variable position. Thus, we first solve the problem of finding the
maximal number of such non-overlapping instantiations (called occurrences).

Definition 8 (Term Occurrences, ◀◁π). Let t, s ∈ T be terms. We say that t
occurs in s at position π (denoted t ◀◁π s) if s|π = tσ for some substitution σ. Two
positions π1 and π2 are overlapping w.r.t. t if there is a position τ ∈ PosΣ(t) such
that π1 = π2.τ or π2 = π1.τ . Let NO(t, s) denote the set of all sets of pairwise
non-overlapping occurrences of t in s. So for S ⊆ Pos(s) we have S ∈ NO(t, s) iff
– if π ∈ S then t ◀◁π s, and
– if π1, π2 ∈ S with π1 ̸= π2 then π1, π2 are non-overlapping w.r.t. t.

Let maxNO(t, s) = maxS∈NO(t,s) |S| be the maximal cardinality of a set in NO(t, s).

So if t ◀◁π1
s and t ◀◁π2

s where π1, π2 are non-overlapping w.r.t. t, then π1, π2

are either orthogonal, or we have s|π1
= tσ1 and tσ2 ⊴ σ1(x) (or s|π2

= tσ2 and
tσ1 ⊴ σ2(x)) for some variable x ∈ V(t) and substitutions σ1, σ2.

For example, we have g(x) ◀◁π g(g(g(x))) for all π ∈ {ε, 1, 1.1} and NO(g(x),
g(g(g(x)))) consists of all subsets of {ε, 1, 1.1}. Thus, maxNO(g(x), g(g(g(x)))) = 3.
So there are three non-overlapping occurrences of the term g(x) in g(g(g(x))), i.e.,
these occurrences can indeed all be counted when analyzing non-termination.

On the other hand, g(g(x)) ◀◁π g(g(g(x))) only holds for π ∈ {ε, 1}, and we
have NO(g(g(x)), g(g(g(x)))) = {∅, {ε}, {1}}, but {ε, 1} /∈ NO(g(g(x)), g(g(g(x)))),
because ε and 1 are overlapping w.r.t. g(g(x)), since 1 ∈ PosΣ(g(g(x))). Thus, we

8 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

Algorithm 1: Compute maxNO(t, s) for t /∈ V
1 q ← EmptyList()
2 for s′ ⊴ s do
3 αs′ ← 0, βs′ ← 0, γs′ ← 0 // Initialize values

4 q.enqueue(leaves) // Start with the leaves
5 while not q.isEmpty() do
6 s′ ← q.dequeue()
7 γs′ ← 1

8 if s′ is leaf then

9 αs′ ←
{
1, if t ◀◁ε s′ // t matches s′

0, otherwise // t does not match s′

10 else
11 βs′ ←

∑
s′=f(v1,...,vk)

∑k
j=1 αvj

12 αs′ ←
{
max

{
βs′ ,

∑
π∈PosV (t) αs′|π + 1

}
, if t ◀◁ε s′ // t matches s′

βs′ , otherwise // t does not match s′

13 if ∀v ∈ s′.parent().children() : γv = 1 // All siblings of s′ processed
14 then
15 q.enqueue(s′.parent()) // Enqueue parent

16 return αs

just obtain maxNO(g(g(x)), g(g(g(x)))) = 1, i.e., we can only count one instead of
two occurrences of the term g(g(x)) in g(g(g(x))). Such overlapping occurrences
cannot be counted separately, because rewriting one occurrence may interfere with
the possibility to rewrite the other one, see Ex. 12.

Computing maxNO(t, s) can be done via a dynamic programming algorithm
traversing the tree structure of s from the leaves to the root, see Alg. 1. For every
node, i.e., every subterm s′ ⊴ s, we compute two numbers: (1) αs′ = maxNO(t, s′)
and (2) βs′ = maxS∈NO(t,s′),ε/∈S |S|, i.e., the maximal number of non-overlapping
occurrences of t in s′ if we do not consider an occurrence of t at the root of s′. For
the leaves, we set βs′ = 0 and αs′ = 1 if t ◀◁ε s′ and αs′ = 0 otherwise. For each
inner node where s′ has the form f(v1, . . . , vk), we set βs′ =

∑
1≤j≤k αvj , and then

check whether there is an occurrence of t at the root of s′, i.e., whether t ◀◁ε s
′. If

not, then we simply set αs′ = βs′ =
∑

1≤j≤k αvj . If there is an occurrence of t at
the root of s′, then αs′ = max{βs′ ,

∑
π∈PosV(t)

αs′|π + 1}, i.e., αs′ is the maximum
of βs′ and the number obtained when considering the root position and maxNO for
all subterms of s′ corresponding to variable positions of t. In Alg. 1, we use a flag
γs′ where γs′ = 1 indicates that we have already computed the values αs′ and βs′ ,
and otherwise we have γs′ = 0. Concerning the runtime of Alg. 1, the algorithm
has to consider each subterm s′ of s and check whether t matches s′, which runs in
time O(|s′|), where |s′| is the number of positions in s′. So Alg. 1 runs in O(|s|2).

Example 9. As an example, Fig. 3 shows the dynamic programming table for the two
terms t = f(a, f(a, x)) and s = f(a, f(a, f(a, f(f(a, f(a, a)), f(a, f(a, a)))))) computed
by Alg. 1. There exists no occurrence of t in si for any 1 ≤ i ≤ 11. For s12 and s13
there is one occurrence of t at the root. Therefore, we have αs12 = αs13 = 1. At
s14 we have no occurrence of t at the root, but two occurrences below the root,
thus αs14 = βs14 = 2. The same holds for s15. Then, we have another occurrence at
the root of s16 that does not overlap with the occurrences at the roots of s12 and

Disproving Termination of PTRSs via Random Walks 9

Subterm s′ αs′ βs′

s1–s11 0 0
s12–s13 1 0
s14 2 2
s15 2 2
s16 3 2
s17 3 3

(a) Dynamic Programming Table

f
s17

a
s9

f
s16

a
s8

f
s15

a
s7

f
s14

f
s13

f
s12

a
s6

f
s11

a
s5

f
s10

a
s4

a
s3

a
s2

a
s1

(b) Tree Structure of s

f

a f

a x

(c) Tree Structure of t

Fig. 3: Computation of maxNO(t, s)

s13, so αs16 = 3. Finally, there is another occurrence at the root of s17, but it is
overlapping (w.r.t. t) with the preceding occurrence at the root of s16. Thus, we
obtain maxNO(t, s) = αs = αs17 = 3.

We now embed random walks based on the maximal number of non-overlapping
occurrences of a looping term t. In general, we start with a P-RST T with root(T) =
t where t is linear (we will explain the reason for the linearity requirement in
Ex. 13). As usual, a term t ∈ T is linear if |t|x ≤ 1 for all x ∈ V , where |t|x denotes
the number of positions π ∈ Pos(t) such that t|π = x.

Then, we extend the rewrite sequence tree T, i.e., we rewrite the terms in its
leaves, until we reach a point where there are enough non-overlapping occurrences
of t in the leaves in order to disprove AST or PAST. In practice, one stops after
reaching a suitable finite RST T, but the following theorem also holds for infinite
RSTs T. We can then use the (finite) tree T as a (finite) representation of an infinite
P-RST T∞, where we can embed a random walk that disproves AST or PAST.

Theorem 10 (Embedding Random Walks via Occurrences (1)). Let P
be a PTRS and let T be a P-RST with h(T) > 0 and root(T) = t, where t is
linear. If we have

∑
v∈Leaf(T) pv ·maxNO(t, tv) > 1, then P is not AST. Moreover,

if
∑

v∈Leaf(T) pv ·maxNO(t, tv) ≥ 1, then P is not PAST.

So for every leaf v, we multiply its probability pv with the number of non-
overlapping occurrences of t in the term tv of the leaf. This number of occurrences in
the leaves gives rise to a random walk µ with µ(x) =

∑
v∈Leaf(T),x=maxNO(t,tv)−1 pv

for all x ∈ Z. By repeatedly rewriting an innermost2 occurrence of t in the leaves of
the tree according to the rules used in T, we obtain an infinite P-RST T∞, where
we can embed the computation of the random walk µ. This yields the desired
lower bound. Note that it is not a problem if different instantiations of t occur at
different positions in a leaf. The reason is that if t starts a loop, then so does every
instantiation of t.

Example 11 (Embedding via Occurrences and Innermost Rewriting). Consider the
PTRS P3 with the rules g(x) → {1/2 : x, 1/2 : f(x)} and f(x) → {1 : g(g(x))}. If
2 The innermost strategy must be used due to rules where a variable occurs more often

on the left-hand side than on the right-hand side. Such rules might decrease the number
of occurrences of t in the arguments when rewriting at a non-innermost position.

10 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

P3-RST T

1 g(x)

1/2 x 1/2 f(x)

1/2 g(g(x))

. . .

↪−→µ-RST

1 1

1/2 0 1/2 2

. . .

e Random Walk µ

µ(−1) = 1/2

µ(1) = 1/2

0 1 2

1/21/2

Fig. 4: Embedding of a Random Walk into a P3-RST to Disprove PAST of P3

we count the occurrences of g(x), then the P3-RST T gives rise to the symmetric
random walk µ both depicted in Fig. 4, which represents a “lower bound” for
the termination behavior of T. Here, we represent µ as a PARS (Z, ↪−→µ) with
y ↪−→µ {(p : y +maxNO(t, tv) − 1) | v ∈ Leaf(T)} for every y > 0. The ↪−→µ-RST
with infinite expected derivation length can be embedded in the tree that results
from extending T by rewriting the innermost subterm g(x) repeatedly according to
the rules used in T. So since µ is not PAST, P3 is not PAST either. However, since µ
is AST, this does not yield any information about whether P3 is AST.

Example 12 (Non-Overlappingness is Required). Non-overlappingness of the differ-
ent occurrences of t in a leaf guarantees that rewriting an innermost occurrence of t
does not interfere with the possibility to rewrite the other occurrences of t later on.
To see this, consider the PTRS P4 with the rule g(g(x)) → {1/3 : x, 2/3 : g(g(g(x)))},
which is AST. If one counted both occurrences of g(g(x)) in the term g(g(g(x))) in
spite of their overlap, then one could embed the random walk µ3 from Fig. 1, and
thus, falsely disprove AST of P4. Here, the problem is that rewriting the innermost
subterm g(g(x)) of g(g(g(x))) could yield g(x), i.e., then the outermost occurrence
of g(g(x)) in g(g(g(x))) would be “destroyed”.

Example 13 (Linearity of t is Required). Linearity of t is required in Thm. 10,
because otherwise rewriting an innermost occurrence of t in a leaf may “destroy”
other occurrences of t in that leaf. As an example, consider the PTRS P5 with the
rule f(x, x) → {1/3 : a, 1/3 : b, 1/3 : f(f(x, x), f(x, x))}. If we count the occurrences of
the term f(x, x), then the P5-RST T where we perform a single rewrite step starting
in f(x, x) gives rise to the random walk µ5 with µ5(−1) = 2/3 and µ5(2) = 1/3,
since maxNO(f(x, x), f(f(x, x), f(x, x))) = 3. Since µ5 is not PAST, we would falsely
disprove PAST of P5. But in fact, P5 is PAST. The problem is that rewriting the
proper subterms of f(f(x, x), f(x, x)) may yield terms like f(a, b), where the two
arguments of f are not equal. Thus, rewriting an innermost occurrence of t = f(x, x)
in f(f(x, x), f(x, x)) may “destroy” the occurrence of t at the root.

So when rewriting innermost occurrences of t according to the rules used in T,
we need linearity of t. Instead, one could also try to rewrite outermost occurrences.
Then, instead of linearity of t, we have to require that there is no leaf v ∈ Leaf(T)
where a variable occurs more often in the looping term t than in the term tv of the
leaf v. A P-RST T is non-variable-decreasing (nvd) if it satisfies | root(T)|x ≤ |tv|x
for all v ∈ Leaf(T) and all x ∈ V . Rewriting an outermost occurrence of t according
to an nvd P-RST T does not affect any other non-overlapping occurrences of t.

Disproving Termination of PTRSs via Random Walks 11

1 t

1/3 f(t, t)1/3 a(x, x) 1/3 b(x, x)

1/9 f(f(t, t), f(t, t))1/9 a(t, t) 1/9 b(t, t)

Fig. 5: P ′5-RST

1 f(g(x))

1/3 f(x) 2/3 f(g(g(x)))

Fig. 6: P6-RST

Theorem 14 (Embedding Random Walks via Occurrences (2)). Let P be
a PTRS and let T be an nvd P-RST with h(T) > 0 and root(T) = t. If we have∑

v∈Leaf(T) pv ·maxNO(t, tv) 1, then P is not (P)AST.

Example 15 (Embedding via Occurrences and Outermost Rewriting). Consider
the PTRS P ′5 (similar to P5 from Ex. 13) with the rule f(x, x) → {1/3 : a(x, x),
1/3 : b(x, x), 1/3 : f(f(x, x), f(x, x))}. Rewriting at the outermost position yields
the nvd P ′5-RST T in Fig. 5, where t = f(x, x). Because of maxNO(t, a(t, t)) =
maxNO(t, b(t, t)) = 2, maxNO(t, f(f(t, t), f(t, t))) = 7, and maxNO(t, a(x, x)) =
maxNO(t, b(x, x)) = 0, we obtain

∑
v∈Leaf(T) pv ·maxNO(t, tv) = 11/9 > 1. Thus,

by Thm. 14 this disproves AST of P ′5.

If t is not linear and the RST T is not nvd, then we can only count orthogonal
occurrences. The maximal number of orthogonal occurrences of t in s is maxOO(t, s) =
max{|S| | S ∈ NO(t, s),∀π1, π2 ∈ S with π1 ̸= π2 : π1⊥π2}.

To compute maxOO(t, s), we can adjust Alg. 1 at Line 12 in the case of t ◀◁ε s
′.

Instead of setting αs′ to the maximum of βs′ and
∑

π∈PosV(t) αs′|π + 1, we set αs′

to max{βs′ , 1}, because now we do not count occurrences below another occurrence
anymore. The runtime of the adjusted algorithm is still in O(|s|2).

Theorem 16 (Embedding Random Walks via Occurrences (3)). Let P
be a PTRS and let T be a P-RST with h(T) > 0 and root(T) = t. If we have∑

v∈Leaf(T) pv ·maxOO(t, tv) 1, then P is not (P)AST.

To automate Thm. 10, 14, and 16, we have to find a P-RST satisfying one
of the two constraints. To this end, we first search for a term t that loops at all.
Here, we reuse the non-probabilistic loop detection algorithms from [14] on the
non-probabilistic variant np(P). After finding a loop of np(P) starting with a
term t, we first check whether t is linear. If t is linear, then we reconstruct the
corresponding P-RST T for this path. On all remaining terms u in the leaves of T,
we check whether we can possibly reach a term s from u such that t ◀◁π s for some
π ∈ Pos(s). This is undecidable in general, but we use the symbol transition graph
from [38] as a sufficient criterion. On those terms u where we may potentially reach
such a term s, we extend the RST by performing further rewrite steps, in order
to obtain leaves that contain more occurrences of t. This is performed repeatedly
until we have constructed an RST that satisfies one of the conditions of Thm. 10 or
until one reaches a certain threshold for the number of rewrite steps. In the latter
case, we try to find another looping term to generate an RST in order to embed a
suitable random walk. If the looping term t is not linear, then we proceed in an
analogous way in order to apply Thm. 14 or Thm. 16, depending on whether the

12 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

initial tree T is nvd or not. In the former case we compute both values maxNO(t, tv)
and maxOO(t, tv) for every leaf v, since rewriting the leaves of T may yield a tree
that is not nvd anymore.

5 Embedding Random Walks Based on Pattern Terms

Instead of counting the occurrences of a single term, we can also count the number
of instantiations applied to a certain base term. To simplify the presentation, we
only consider orthogonal occurrences in this section. However, similar to Sect. 4,
corresponding approaches that consider pairwise non-overlapping occurrences and
use innermost or outermost rewriting are possible as well.

Example 17. Consider P6 = {f(g(x)) → {1/3 : f(x), 2/3 : f(g(g(x)))}} modeling a
positively biased random walk on the number of g’s directly below an f in a
term and the corresponding P6-RST in Fig. 6. Here, it is not enough to count the
occurrences of f(g(x)) to disprove AST, but instead we have to count the occurrences
of g(x) below an f symbol. Moreover, note that the f in f(x) is crucial. The PTRS
P ′6 with the rule f(g(x)) → {1/3 : x, 2/3 : f(g(g(x)))} does not model a random walk
anymore, since from any term f(gn(x)) we have the option to directly stop and
rewrite to gn−1(x) (removing the outer f). So P6 is not AST, but P ′6 is even PAST.

We formalize this with the concept of a pattern term ⟨t, σ⟩ that represents all
terms which result from applying the pumping substitution σ repeatedly to the base
term t, i.e., ⟨t, σ⟩ represents the terms t, tσ, tσ2, etc. For example, if t = f(x) and
σ = [x/g(x)], then ⟨t, σ⟩ represents the terms f(x), f(g(x)), f(g(g(x))), etc. A similar
notion was defined in [10] to disprove non-looping non-termination. In contrast,
here we want to count loops, and we want to count how often the substitution σ is
applied. Therefore, we have to distinguish tσm and tσm′

whenever m ̸= m′.

Definition 18 (Pattern Term). A pair ⟨t, σ⟩ is a pattern term if tσm ≠ tσm′

holds whenever m ≠ m′. We call t the base term and σ the pumping substitution.

To check whether ⟨t, σ⟩ is a pattern term, we use the variable transition graph.

Definition 19 (Variable Transition Graph). For any substitution σ, Gσ is the
graph that has all variables as nodes and there is an edge from x to y if y ∈ V(xσ).
For any term t, the variable transition graph of σ w.r.t. t is the subgraph Gσ,t of
Gσ which contains only those nodes that are reachable from a node in V(t).

x y

z

Example 20. Let t = f(x, y) and σ = [x/f(z, y), y/x]. The graph Gσ,t is
shown on the right. There is an edge from z to z because z /∈ dom(σ),
and hence, zσ = z. The nodes from V(t) = {x, y} are marked by circles.

The variable transition graph yields a computable criterion to detect pattern terms.

Lemma 21 (Detecting Pattern Terms). For a term t and a substitution σ,
⟨t, σ⟩ is a pattern term iff some cycle of Gσ,t contains a variable x such that xσ /∈ V.

Example 22. The pair ⟨t, σ⟩ with t = f(x, y) and σ = [x/f(z, y), y/x] is a pattern
term, because Gσ,t has a cycle that contains the variable x and xσ = f(z, y) /∈ V.

Disproving Termination of PTRSs via Random Walks 13

Next, we consider the problem of counting orthogonal pattern term occurrences.

Definition 23 (Pattern Occurrences). Let ⟨t, σ⟩ be a pattern term and let
s ∈ T be a term. We say that ⟨t, σ⟩ occurs with multiplicity mπ ∈ N at position π in
s (denoted by ⟨t, σ⟩ ◀◁mπ

π s) if there is an occurrence t ◀◁π s and mπ is the maximal
number such that tσmπ ◀◁π s. For every set S ∈ NO(t, s), let mS =

∑
π∈S mπ. Let

maxOPO(t, σ, s) = max{mS | S ∈ NO(t, s), ∀π1, π2 ∈ S with π1 ̸= π2 : π1⊥π2}
denote the maximal value that one can obtain by adding all multiplicities for a set
S of pairwise orthogonal occurrences of ⟨t, σ⟩ in s.

Example 24. As an example, consider the term t = f(x), the substitution σ =
[x/g(x)], and s = c(f(g(x)), f(g(g(x)))). Then ⟨t, σ⟩ occurs in s at position 1
with multiplicity 1, and at position 2 with multiplicity 2. Thus, we have m1 = 1
and m2 = 2. Since NO(t, s) = {∅, {1}, {2}, {1, 2}} and both occurrences are at
orthogonal positions, we have maxOPO(t, σ, s) = m{1,2} = 1 + 2 = 3.

To compute maxOPO(t, σ, s), we use Alg. 1 with tσ instead of t. Moreover, we
adjust Alg. 1 at Line 12 in the case of tσ ◀◁ε s

′. Instead of setting αs′ to max{βs′ , 1}
as in the computation of maxOO(tσ, s), we set αs′ to max{βs′ ,m} where m is the
multiplicity of the occurrence of ⟨t, σ⟩ at the root of s′. Note that we only consider
orthogonal occurrences here. So if we consider the occurrence at the root of s′, then
occurrences below the root are ignored. To find m, we check for occurrences of tσ,
tσ2, . . ., tσ|s|. Compared to Alg. 1, we have to perform at most |s| − 1 additional
matching checks in each iteration, resulting in a runtime of O(|s|3).

Example 25. Consider the pattern term ⟨t′, σ⟩ with base term t′ = f(a, x) and
pumping substitution σ = [x/f(a, x)], and let t = f(a, f(a, x)) and s be as in Ex. 9.
Note that t = f(a, x)[x/f(a, x)]. We have occurrences of ⟨t′, σ⟩ with multiplicity 0
at s10, s11, and s15; with multiplicity 1 at s12, s13, and s16; and with multiplicity
2 at the root s17. Since we only consider occurrences at orthogonal positions,
the maximum is obtained by adding the multiplicities for the orthogonal sub-
terms s12 and s13 or by considering the multiplicity at the root. Thus, we obtain
maxOPO(t′, σ, s) = αs = αs17 = 2.

As demonstrated by the PTRS P ′6 in Ex. 17, if a term tσm can be rewritten to
a term without any occurrence of t, then this does not mean that the multiplicity
is reduced by m, but it may mean that one directly reaches a normal form. Hence,
then this pattern cannot be used to disprove (P)AST. So a pattern ⟨t, σ⟩ may only
be used for disproving (P)AST if we have a P-RST where every leaf contains an
occurrence of t. Moreover, if we have a P-RST T that starts with tσ1 and has
an occurrence ⟨t, σ⟩ ◀◁q

π tv in a leaf v, then we also need that the tree can be
“generalized” from 1 to an arbitrary multiplicity m ∈ N>0, i.e., rewriting the term
tσm using the same rules as in T at the same positions must result in a leaf v′ with
an occurrence ⟨t, σ⟩ ◀◁q+m−1

π tv′ . For any occurrence ⟨t, σ⟩ ◀◁q
π tv, let κv,π be the

substitution such that tσqκv,π = tv|π. Then we ensure this generalization property
by requiring commutation of σ with all these substitutions κv,π.

Definition 26 (Pattern Tree). Let P be a PTRS, let T be a P-RST, and let
⟨t, σ⟩ be a pattern term. T is a P-pattern tree for ⟨t, σ⟩ if root(T) = tσ, for every

14 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

leaf v ∈ Leaf(T) there exists an occurrence t ◀◁π tv, and whenever tσqκv,π = tv|π
for some q ≥ 0, some π ∈ Pos(tv), and some substitution κv,π, then the pumping
substitution σ commutes with κv,π, i.e., σκv,π = κv,πσ.

For Ex. 17, the P6-RST in Fig. 6 is a pattern tree for the pattern term ⟨t, σ⟩
where t = f(x) and σ = [x/g(x)]. Here, the substitutions κv1,ε and κv2,ε for the two
leaves are the identity, which commutes with σ. Indeed, this tree can be “generalized”
to arbitrary multiplicities m > 0, because the corresponding P6-RST starting with
f(gm(x)) at the root has f(gm−1(x)) and f(g2+m−1(x)) in its leaves.

Similar to Thm. 16, by rewriting orthogonal occurrences, we result in a technique
to embed random walks via patterns in a P-RST.

Theorem 27 (Embedding RWs via Patterns). Let P be a PTRS, ⟨t, σ⟩ be
a pattern term, and let T be a P-pattern tree for ⟨t, σ⟩ with h(T) > 0. If we have∑

v∈Leaf(T) pv ·maxOPO(t, σ, tv) 1, then P is not (P)AST.

Example 28. Using Thm. 27, we can now embed the positively biased random walk
µ3 from Fig. 1 with µ3(−1) = 1/3 and µ3(1) = 2/3 in the P6-RST of Fig. 6 and
disprove AST.

Example 29. By counting the number of applications of the pumping substitution
σ = [x/g(y), y/f(x)] to the base term t = c(y, x), we can disprove AST of the PTRS
P7 with the only rule c(f(x), g(y)) → {1/3 : c(y, x), 2/3 : c(f(g(y)), g(f(x)))} via
Thm. 27. Again, we can embed the random walk µ3 in the RST corresponding to
the only rewrite rule, because the child t = c(y, x) has the probability 1/3, and the
second child tσ2 = c(f(g(y)), g(f(x))) has the probability 2/3.

Remark 30. Note that Thm. 27 is not a generalization of Thm. 16. We can disprove
PAST of the PTRS P8 with the rule g → {1/2 : a, 1/2 : c(g, g)} via Thm. 16 by
simply taking the tree T corresponding to the only rewrite rule and counting the
occurrences of g. However, there is no pattern term ⟨t, σ⟩ such that tσ = g. Indeed,
PAST of P8 cannot be disproven via Thm. 27.

To automate Thm. 27, we adapt our implementation of Thm. 16. After finding
the pattern tσ, we have to rewrite the leaves until we obtain a pattern tree. Note
that we can directly stop if our reachability analysis shows that some leaf cannot
reach a term containing an occurrence of t.

6 Evaluation and Conclusion

We presented the first techniques to disprove (P)AST of PTRSs automatically. To
this end, we embed random walks in rewrite sequence trees, based on counting
occurrences of terms or multiplicities of patterns. In this way, qualitative approaches
to detect non-termination of non-probabilistic TRSs based on loops or pattern
terms can now be lifted to the probabilistic setting, where a quantitative analysis is
required. Our approach can be based on any algorithm to detect loops for standard
non-probabilistic TRSs.

We implemented our new contributions in our termination prover AProVE [15].
Currently, we run our techniques to prove and to disprove termination of PTRSs in

Disproving Termination of PTRSs via Random Walks 15

parallel and stop once one of the techniques succeeds. For proving termination, we
use the probabilistic dependency pair (DP) framework [26, 27], which modularizes
termination proofs such that one can apply different techniques to different sub-
problems. In the future, we plan to integrate our new techniques to disprove AST
or PAST into the DP frameworks for AST [27] and PAST [26], respectively. Then the
DP framework can help to detect those parts of a PTRS which are potentially
non-terminating such that one can restrict the search for non-termination proofs
to these parts. Moreover, we also plan to analyze whether there are interesting
subclasses of PTRSs where AST or PAST is decidable.

To evaluate the power of our new techniques, we used the benchmark set of all
138 PTRSs from the Termination Problem Data Base [41], i.e., the benchmarks
used for the annual Termination Competition [16]. They contain 138 typical
probabilistic programs, including examples with complicated probabilistic structure
and probabilistic algorithms on lists and trees. Note that this set was mainly
developed to evaluate techniques that can prove AST or PAST. Therefore, most of
the examples are indeed AST, and we added 20 more examples that are not AST or
not PAST, which express typical bugs in implementations.

Category Thm. 4 Thm. 10 Thm. 14 Thm. 16 Thm. 27 AProVE

AST 8 18 19 16 13 25

PAST 8 33 34 28 27 49

We performed our experiments on a computer with an Apple M4 CPU and 16
GB of RAM, and a timeout of 30 seconds was used for each example. The table
above shows the individual results for each of our novel theorems, and “AProVE”
denotes the combination of all techniques as implemented in our tool. Note that
AProVE can prove AST for 69 of the 158 examples and prove PAST for 32 of the 158
examples. So at most 158− 69 = 89 examples may be non-AST and AProVE can
disprove AST for 25 of them. Similarly, at most 126 examples may be non-PAST and
AProVE disproves PAST for 49 of them.

The experimental results for Thm. 4 confirm that one indeed needs more
elaborate techniques than just a direct lifting of the loop detection technique to
the probabilistic setting. Our experiments show that each of our theorems has its
own benefits. More precisely, for each of the five theorems, there exist examples
that can only be solved by this theorem but not by any of the other four theorems.

Since ours is the first approach to disprove (P)AST of PTRSs automatically,
we could not compare with other tools for termination analysis of PTRSs. While
there exist techniques [8, 39] and the tool Amber [33] for disproving (P)AST of
imperative programs, an experimental comparison would be problematic due to
the fundamental differences between the considered languages.

For further details on our experiments and precise results for each theorem on
each benchmark, to access the collection of benchmarks, and for instructions on how
to run AProVE via its web interface or locally, we refer to: https://aprove-developers.
github.io/DisprovingPTRSTermination/

Acknowledgements. We thank Florian Frohn and Carsten Fuhs for a joint
discussion on initial ideas for this paper during CADE ’23 in Rome.

https://aprove-developers.github.io/DisprovingPTRSTermination/
https://aprove-developers.github.io/DisprovingPTRSTermination/

16 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

References

[1] M. Avanzini, U. Dal Lago, and A. Yamada. “On Probabilistic Term Rewriting”.
In: Sci. Comput. Program. 185 (2020). doi: 10.1016/j.scico.2019.102338.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998. doi: 10.1017/CBO9781139172752.

[3] D. Beyer and J. Strejček. “Improvements in Software Verification and Witness
Validation: SV-COMP 2025”. In: Proc. TACAS ’25. LNCS 15698. Website
of SV-COMP : https ://sv- comp.sosy- lab.org/. 2025, pp. 151–186. doi:
10.1007/978-3-031-90660-2_9.

[4] O. Bournez and C. Kirchner. “Probabilistic Rewrite Strategies. Applications
to ELAN”. In: Proc. RTA ’02. LNCS 2378. 2002, pp. 252–266. doi: 10.1007/3-
540-45610-4_18.

[5] O. Bournez and F. Garnier. “Proving Positive Almost-Sure Termination”. In:
Proc. RTA ’05. LNCS 3467. 2005, pp. 323–337. doi: 10.1007/978-3-540-
32033-3_24.

[6] M. Braverman. “Termination of Integer Linear Programs”. In: Proc. CAV ’06.
LNCS 4144. 2006, pp. 372–385. doi: 10.1007/11817963_34.

[7] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. “Automated Detection
of Non-Termination and NullPointerExceptions for Java Bytecode”. In: Proc.
FoVeOOS ’12. LNCS 7421. 2012, pp. 123–141. doi: 10.1007/978-3-642-31762-
0_9.

[8] K. Chatterjee, P. Novotný, and Ð. Žikelić. “Stochastic Invariants for Proba-
bilistic Termination”. In: Proc. POPL ’17. 2017, pp. 145–160. doi: 10.1145/
3009837.3009873.

[9] H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. O’Hearn. “Proving Nonter-
mination via Safety”. In: Proc. TACAS ’14. LNCS 8413. 2014, pp. 156–171.
doi: 10.1007/978-3-642-54862-8_11.

[10] F. Emmes, T. Enger, and J. Giesl. “Proving Non-Looping Non-Termination
Automatically”. In: Proc. IJCAR ’12. LNCS 7364. 2012, pp. 225–240. doi:
10.1007/978-3-642-31365-3_19.

[11] J. Endrullis and H. Zantema. “Proving Non-Termination by Finite Automata”.
In: Proc. RTA ’15. LIPIcs 36. 2015, pp. 160–176. doi: 10.4230/LIPICS.RTA.
2015.160.

[12] F. Frohn and C. Fuhs. “A Calculus for Modular Loop Acceleration and
Non-Termination Proofs”. In: Int. J. Softw. Tools Technol. Transf. 24 (2022),
pp. 691–715. doi: 10.1007/s10009-022-00670-2.

[13] F. Frohn and J. Giesl. “Proving Non-Termination by Acceleration Driven
Clause Learning (Short Paper)”. In: Proc. CADE ’23. LNCS 14132. 2023,
pp. 220–233. doi: 10.1007/978-3-031-38499-8_13.

[14] J. Giesl, R. Thiemann, and P. Schneider-Kamp. “Proving and Disproving
Termination of Higher-Order Functions”. In: Proc. FroCoS ’05. LNCS 3717.
2005, pp. 216–231. doi: 10.1007/11559306_12.

[15] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swi-
derski, and R. Thiemann. “Analyzing Program Termination and Complexity

https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1017/CBO9781139172752
https://sv-comp.sosy-lab.org/
https://doi.org/10.1007/978-3-031-90660-2_9
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-31365-3_19
https://doi.org/10.4230/LIPICS.RTA.2015.160
https://doi.org/10.4230/LIPICS.RTA.2015.160
https://doi.org/10.1007/s10009-022-00670-2
https://doi.org/10.1007/978-3-031-38499-8_13
https://doi.org/10.1007/11559306_12

Disproving Termination of PTRSs via Random Walks 17

Automatically with AProVE”. In: J. Autom. Reason. 58.1 (2017), pp. 3–31.
doi: 10.1007/s10817-016-9388-y.

[16] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. “The Termi-
nation and Complexity Competition”. In: Proc. TACAS ’19. LNCS 11429.
Website of TermComp: https://termination-portal.org/wiki/Termination_
Competition. 2019, pp. 156–166. doi: 10.1007/978-3-030-17502-3_10.

[17] J. Giesl, P. Giesl, and M. Hark. “Computing Expected Runtimes for Constant
Probability Programs”. In: Proc. CADE ’19. LNCS 11716. 2019, pp. 269–286.
doi: 10.1007/978-3-030-29436-6_16.

[18] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. “Probabilistic
Programming”. In: Proc. FOSE ’14. 2014, pp. 167–181. doi: 10.1145/2593882.
2593900.

[19] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford
University Press, 2020.

[20] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu.
“Proving Non-Termination”. In: Proc. POPL ’08. 2008, pp. 147–158. doi:
10.1145/1328438.1328459.

[21] R. Gutiérrez and S. Lucas. “Automatically Proving and Disproving Feasibility
Conditions”. In: Proc. IJCAR ’20. LNCS 12167. 2020, pp. 416–435. doi:
10.1007/978-3-030-51054-1_27.

[22] M. Hark, F. Frohn, and J. Giesl. “Termination of Triangular Polynomial
Loops”. In: Formal Methods Syst. Des. 65.1 (2025), pp. 70–132. doi: 10.1007/
S10703-023-00440-Z.

[23] M. Hosseini, J. Ouaknine, and J. Worrell. “Termination of Linear Loops over
the Integers”. In: Proc. ICALP ’19. LIPIcs 132. 2019. doi: 10.4230/LIPIcs.
ICALP.2019.118.

[24] J.-C. Kassing and J. Giesl. “Proving Almost-Sure Innermost Termination of
Probabilistic Term Rewriting Using Dependency Pairs”. In: Proc. CADE ’23.
LNCS 14132. 2023, pp. 344–364. doi: 10.1007/978-3-031-38499-8_20.

[25] J. Kassing and J. Giesl. “From Innermost to Full Probabilistic Term Rewriting:
Almost-Sure Termination, Complexity, and Modularity”. In: Log. Methods
Comput. Sci. 21.4 (2025). doi: 10.46298/LMCS-21(4:28)2025.

[26] J.-C. Kassing, L. Spitzer, and J. Giesl. “Dependency Pairs for Expected
Innermost Runtime Complexity and Strong Almost-Sure Termination of
Probabilistic Term Rewriting”. In: Proc. PPDP ’25. 2025. doi: 10.1145/
3756907.3756917.

[27] J.-C. Kassing and J. Giesl. “The Annotated Dependency Pair Framework for
Almost-Sure Termination of Probabilistic Term Rewriting”. In: Sci. Comput.
Program. 251 (2026), p. 103417. doi: 10.1016/j.scico.2025.103417.

[28] D. Larraz, K. Nimkar, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio.
“Proving Non-termination Using Max-SMT”. In: Proc. CAV ’14. LNCS 8559.
2014, pp. 779–796. doi: 10.1007/978-3-319-08867-9_52.

[29] G. F. Lawler and V. Limic. Random Walk: A Modern Introduction. Cambridge
University Press, June 2010.

[30] J. Leike and M. Heizmann. “Geometric Nontermination Arguments”. In: Proc.
TACAS ’18. LNCS 10806. 2018, pp. 266–283. doi: 10.1007/978-3-319-89963-
3_16.

https://doi.org/10.1007/s10817-016-9388-y
https://termination-portal.org/wiki/Termination_Competition
https://termination-portal.org/wiki/Termination_Competition
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/S10703-023-00440-Z
https://doi.org/10.1007/S10703-023-00440-Z
https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.46298/LMCS-21(4:28)2025
https://doi.org/10.1145/3756907.3756917
https://doi.org/10.1145/3756907.3756917
https://doi.org/10.1016/j.scico.2025.103417
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-89963-3_16
https://doi.org/10.1007/978-3-319-89963-3_16

18 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

[31] N. Lommen and J. Giesl. “Targeting Completeness: Using Closed Forms
for Size Bounds of Integer Programs”. In: Proc. FroCoS ’23. LNCS 14279.
2023, pp. 3–22. doi: 10.1007/978-3-031-43369-6_1.

[32] S. Lucas and R. Gutiérrez. “Use of Logical Models for Proving Infeasibility in
Term Rewriting”. In: Inf. Process. Lett. 136 (2018), pp. 90–95. doi: 10.1016/
j.ipl.2018.04.002.

[33] M. Moosbrugger, E. Bartocci, J. Katoen, and L. Kovács. “Automated Termi-
nation Analysis of Polynomial Probabilistic Programs”. In: Proc. ESOP ’21.
LNCS 12648. 2021, pp. 491–518. doi: 10.1007/978-3-030-72019-3_18.

[34] É. Payet. “Loop Detection in Term Rewriting Using the Eliminating Unfold-
ings”. In: Theor. Comput. Sc. 403 (2008), pp. 307–327. doi: 10.1016/j.tcs.
2008.05.013.

[35] É. Payet. “Non-Termination in Term Rewriting and Logic Programming”. In:
J. Autom. Reason. 68.4 (2024). doi: 10.1007/s10817-023-09693-z.

[36] N. Saheb-Djahromi. “Probabilistic LCF”. In: Proc. MFCS ’78. LNCS 64. 1978,
pp. 442–451. doi: 10.1007/3-540-08921-7_92.

[37] F. Spitzer. Principles of Random Walk. Vol. 34. Springer, 2001.
[38] C. Sternagel and A. Yamada. “Reachability Analysis for Termination and

Confluence of Rewriting”. In: Proc. TACAS ’19. LNCS 11427. 2019, pp. 262–
278. doi: 10.1007/978-3-030-17462-0_15.

[39] T. Takisaka, Y. Oyabu, N. Urabe, and I. Hasuo. “Ranking and Repulsing
Supermartingales for Reachability in Randomized Programs”. In: ACM Trans.
Program. Lang. Syst. 43 (2021). doi: 10.1145/3450967.

[40] A. Tiwari. “Termination of Linear Programs”. In: Proc. CAV ’04. LNCS 3114.
2004, pp. 70–82. doi: 10.1007/978-3-540-27813-9_6.

[41] TPDB. Termination Problem Data Base. 2025. url: https://github.com/
TermCOMP/TPDB-ARI.

[42] M. Xu and Z.-B. Li. “Symbolic Termination Analysis of Solvable Loops”. In:
J. Symb. Comput. 50 (2013), pp. 28–49. doi: 10.1016/j.jsc.2012.05.005.

[43] A. Yamada. “Term Orderings for Non-Reachability of (Conditional) Rewrit-
ing”. In: Proc. IJCAR ’22. 13385. 2022, pp. 248–267. doi: 10.1007/978-3-031-
10769-6_15.

https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.1016/j.ipl.2018.04.002
https://doi.org/10.1016/j.ipl.2018.04.002
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1016/j.tcs.2008.05.013
https://doi.org/10.1016/j.tcs.2008.05.013
https://doi.org/10.1007/s10817-023-09693-z
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1007/978-3-030-17462-0_15
https://doi.org/10.1145/3450967
https://doi.org/10.1007/978-3-540-27813-9_6
https://github.com/TermCOMP/TPDB-ARI
https://github.com/TermCOMP/TPDB-ARI
https://doi.org/10.1016/j.jsc.2012.05.005
https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-031-10769-6_15

Disproving Termination of PTRSs via Random Walks 19

A Appendix

In this appendix, we give all proofs for our lemmas and theorems.

Theorem 4 (Disproving AST via Loops). Let P be a PTRS and T be a P-RST
with h(T) > 0 such that root(T) = t and for every v ∈ Leaf(T) there is a context
Cv and a substitution σv such that tv = Cv[tσv]. Then P is neither AST nor PAST.

Proof. We construct an infinite P-RST T∞ based on T where we always rewrite
one of the occurrences of t in a leaf according to the rules used to generate T. Since
T has an occurrence of t in every leaf, the resulting tree T∞ has no leaves, and
therefore, P is neither AST nor PAST.

T∞:

1 t

p1 C1[tσ1]

p2 C2[tσ2]

p3 C3[tσ3]

. . .

. . .

. . .

. . .

. . .

. . .

We only have to show that if we rewrite a term s = C[tσ] for some context
C and some substitution σ using the same rules as in T, then we result in a tree
Ts where all leaves contain an occurrence of t again. Let τ be the position of the
hole in C. If we rewrite at position π in T, then we rewrite at position τ.π in the
tree Ts. For every leaf v ∈ Leaf(T) there is a corresponding leaf v′ ∈ Leaf(Ts) with
tv′ = C[tvσ]. Since there exists an occurrence of t within tv, i.e., tv = C ′[tσ′], there
is an occurrence of t within tv′ = C[tvσ] = C[C ′[tσ′]σ] as well. ⊓⊔

Theorem 6 (Lower Bounds via Embeddings). Let (A1,→1) and (A2,→2)
be two PARSs, and let Ti be a →i-RST for i ∈ {1, 2} such that there exists an
embedding from T1 to T2. Then, |T2| ≤ |T1| and edl(T1) ≤ edl(T2).

Proof. Let Pre(v) be the set of all (not necessarily direct) predecessors of a node
v ∈ Leaf(T2) including the node v itself. Similarly, let Post(v) be the set of all (not
necessarily direct) successors of a node v ∈ Leaf(T2) including the node v itself.
Finally, by PostLeaf(v) we denote the set of all leaves in Post(v).

We start with some basic observations.

I. Since we have pv = pe(v) for all v ∈ Leaf(T1) by definition of an embedding
(Def. 5) and pr = 1 for the root node r of T1 by definition of a →-RST, we
must map the root r of T1 to some node v ∈ V (T2) with pv = pe(r) = pr = 1.

II. The nodes v1, . . . , vn of T2 with probability 1, i.e., v ∈ V (T2) with pv = 1,
form a connected path. Let v′ be the node with the greatest depth within this
path. Every node w ∈ V (T2) with pw < 1 is a successor of v′, i.e., w ∈ Post(v′).
Thus, together with I. we obtain that every node w ∈ V (T2) has a predecessor
v ∈ Pre(w) such that v = e(u) for some u ∈ V (T1).

20 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

III. Every w ∈ Leaf(T2) has a predecessor v ∈ Pre(w) that is the image of a leaf
u ∈ Leaf(T1) in T1 (i.e., e(u) = v).
Assume for a contradiction that this statement is false. By II. we know that
there is at least some v ∈ Pre(w) that is the image of some node u ∈ V (T1).
Let v be the predecessor with the largest depth among all such predecessors
that are the image of some node u ∈ V (T1). If u is not a leaf, then there
exist direct successors u1, . . . , uk of u in T1 with pu =

∑k
j=1 puj . Since e is

injective, we have e(uj) ̸= v for all 1 ≤ j ≤ k. By definition of an embedding,
we have pv = pe(u) = pu =

∑k
j=1 puj =

∑k
j=1 pe(uj). Now w would be a node

that is a successor of v but it does not have any pe(uj) as predecessor (since v
was the deepest predecessor being an image of a node from T1). But since the
probabilities of all e(u1), . . . , e(uk) already add up to pv, and e(u1), . . . , e(uk)
must also be successors of v by the definition of an embedding, this would
imply that pw = 0, which is a contradiction.

Next, we show |T2| ≤ |T1|. If v ∈ Leaf(T2), then there has to exist a w ∈
Pre(v) that is the image of a leaf u ∈ Leaf(T1) in T1 (i.e., e(u) = w). Note that
by the definition of embeddings we have pw = pe(u) = pu. Moreover, we have∑

v∈PostLeaf (w) pv ≤ pw, i.e., the sum of the probabilities of successors of w cannot
be higher than the probability of pw itself, because following the rewrite sequence
cannot increase the probability. Thus, we obtain

|T2| =
∑

v∈Leaf(T2)
pv =

∑
u∈Leaf(T1)

∑
v∈PostLeaf (e(u))

pv
≤

∑
u∈Leaf(T1)

pe(u) =
∑

u∈Leaf(T1)
pu = |T1|.

Next, we consider the expected derivation length. If |T2| < 1, then we have
edl(T2) = ∞ and thus, the claim is trivial. Hence, let |T2| = 1. Due to |T2| ≤ |T1|,
this also implies |T1| = 1. Note that a path from the root to a leaf v in T2 is at
least as long as the path from the root to the corresponding leaf u in T1 (where
e(u) = w for a w ∈ Pre(v)), since e is injective and “path preserving”. Therefore,
we have d(u) ≤ d(v) for all v ∈ PostLeaf(e(u)), and thus

edl(T2) =
∑

u∈Leaf(T1)

∑
v∈PostLeaf (e(u))

d(v) · pv
≥

∑
u∈Leaf(T1)

∑
v∈PostLeaf (e(u))

d(u) · pv
=

∑
u∈Leaf(T1)

d(u) ·
∑

v∈PostLeaf (e(u))
pv

=
∑

u∈Leaf(T1)
d(u) · pe(u)

=
∑

u∈Leaf(T1)
d(u) · pu

= edl(T1)

To conclude
∑

v∈PostLeaf (e(u))
pv = pe(u) in the fourth step, note that |T2| = 1

implies that we have pw = PostLeaf(w) pv for every node w of T2. ⊓⊔

Theorem 10 (Embedding Random Walks via Occurrences (1)). Let P
be a PTRS and let T be a P-RST with h(T) > 0 and root(T) = t, where t is
linear. If we have

∑
v∈Leaf(T) pv ·maxNO(t, tv) > 1, then P is not AST. Moreover,

if
∑

v∈Leaf(T) pv ·maxNO(t, tv) ≥ 1, then P is not PAST.

Disproving Termination of PTRSs via Random Walks 21

Proof. If we have |T| =
∑

v∈Leaf(T) pv < 1, then T is itself a witness that P is not
AST and not PAST. Therefore, we now consider the case |T| = 1.

We define the random walk µ by µ(x) =
∑

v∈Leaf(T),x=maxNO(t,tv)−1 pv for all
x ∈ Z. Note that

E(µ) =
∑

v∈Leaf(T) pv · (maxNO(t, tv)− 1)

= (
∑

v∈Leaf(T) pv ·maxNO(t, tv))− (
∑

v∈Leaf(T) pv)

= (
∑

v∈Leaf(T) pv ·maxNO(t, tv))− 1 (since
∑

v∈Leaf(T) pv = 1)

Therefore, if
∑

v∈Leaf(T) pv · maxNO(t, tv) > 1, then we have E(µ) > 0 and by
Thm. 1, µ is not AST. Similarly, if

∑
v∈Leaf(T) pv ·maxNO(t, tv) ≥ 1, then we have

E(µ) ≥ 0 and by Thm. 1, µ is not PAST.
We can represent µ as a PARS (Z, ↪−→µ) with y ↪−→µ {(p : y+maxNO(t, tv)−1) |

v ∈ Leaf(T)} for every y > 0. Let T1 be the infinite ↪−→µ-RST that starts at 1. Note
that |T1| < 1 if µ is not AST, and edl(T1) = ∞ if µ is not PAST. The only difference
between µ and the PARS (Z, ↪−→µ) is that ↪−→µ is defined via multi-distributions
which may have multiple different pairs (p1 : x), . . . , (pk : x) for the same number
x, while µ maps every value x to a single probability (µ(x) =

∑k
i=1 pi). However,

since for every number x there is only a single rewrite rule with x as its left-hand
side, the termination probability and expected derivation length are equal for µ
and (Z, ↪−→µ).

We construct an infinite P-RST T∞ based on T where we always rewrite an
innermost occurrence of t in a leaf according to the rules used to generate T. If we
have maxNO(t, tv) = 0 in a leaf v, then it remains a leaf in T∞. We have to prove
that T∞ behaves like the rewrite sequence tree of our random walk µ.

We first show that if we have a term s ∈ T with maxNO(t, s) = k ∈ N>0, then
instead of the tree T whose root is labeled with t, we can construct a tree Ts whose
root is labeled with s, where Ts is like T when rewriting an innermost occurrence
of t in s instead, according to the rules used in T. Thus, we can define a bijective
embedding es : V (T) → V (Ts) and obtain maxNO(t, tes(v)) ≥ maxNO(t, tv)+k−1
for all leaves v ∈ Leaf(T). (While k was the original number of occurrences of
t in s, this number is now modified according to the random walk µ.) To prove
this inequation, let {π1, . . . , πk} ∈ NO(t, s) be a witness for the k pairwise non-
overlapping occurrences of t in s. The term s has the form s = C[tδ] for some
context C with a hole at position π1 and substitution δ. Let π1 be the position of
an innermost occurrence of t, i.e., there is no πj with 1 ≤ j ≤ k strictly below π1.
To construct Ts, we rewrite C[tδ] according to T at position π1. This is possible,
since if t can be rewritten via the rules used in T then so does every instantiation
of t. Let v ∈ Leaf(T) and es(v) ∈ Leaf(Ts) be the corresponding leaf in Ts which
we get by following the same path in Ts as in T. We have tes(v) = C[tvδ]. Since
t is linear and {π1, . . . , πk} are pairwise non-overlapping w.r.t. t, we still have
{π2, . . . , πk} ∈ NO(t, C[tvδ]). Moreover, all occurrences of t in tv also exist in
tvδ. Finally, the occurrences of t in tvδ are non-overlapping with {π2, . . . , πk}
because they are below π1. Thus, we get maxNO(t, tes(v)) = maxNO(t, C[tvδ]) =
maxNO(t, tvδ) + k − 1 ≥ maxNO(t, tv) + k − 1.

22 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

Now we define the embedding e : V (T1) → V (T∞) from the ↪−→µ-RST by
induction on the depth of the node in T1. Moreover, for every node w ∈ V (T1)
that is labeled with the number aw in T1, we prove aw ≤ maxNO(t, te(w)).

We start by mapping the root w of T1 to the root of T∞. Here, we have aw = 1
and maxNO(t, te(w)) = maxNO(t, t) = 1.

Now assume that we have already defined the mapping for a node w ∈ V (T1)
and we have aw ≤ maxNO(t, te(w)). Every child u of w in V (T1) is labeled by
a number of the form au = aw + x with x ∈ Z and µ(x) > 0. Thus, by the
definition of µ, there is a v ∈ Leaf(T) with x = maxNO(t, tv) − 1. Consider the
tree Tte(w)

. As aw ≤ maxNO(t, te(w)), we know that if w has a child in T1, then
1 ≤ aw ≤ maxNO(t, te(w)). Thus, by the inequation proved above, there is a bijective
embedding ete(w)

of T into Tte(w)
where maxNO(t, tete(w)

(v)) ≥ maxNO(t, tv) +

k − 1 for k = maxNO(t, te(w)). As aw ≤ k, this implies maxNO(t, tete(w)
(v)) ≥

maxNO(t, tv)+aw−1. In T∞, the node e(w) eventually reaches a node corresponding
to ete(w)

(v). Thus, e(u) is defined to be this node. Then we have au = aw + x =
aw +maxNO(t, tv)− 1 ≤ maxNO(t, tete(w)

(v)) = maxNO(t, te(u)). Injectivity, path
preservation, and equal probabilities for the embedding e follow by construction.

By Thm. 6, we get |T∞| ≤ |T1| and edl(T∞) ≥ edl(T1). So if |T1| < 1 holds,
then P is not AST, and if edl(T1) = ∞ holds, then P is not PAST. ⊓⊔

Theorem 14 (Embedding Random Walks via Occurrences (2)). Let P be
a PTRS and let T be an nvd P-RST with h(T) > 0 and root(T) = t. If we have∑

v∈Leaf(T) pv ·maxNO(t, tv) 1, then P is not (P)AST.

Proof. The proof is analogous to the one of Thm. 10, but now we construct the
infinite P-RST T∞ based on T by always rewriting an outermost occurrence of t.

Again, if s ∈ T with maxNO(t, s) = k ∈ N>0, then instead of the tree T whose
root is labeled with t, we show that we can construct a tree Ts whose root is labeled
with s, where Ts is like T when rewriting an outermost occurrence of t in s instead,
according to the rules used in T. As in the proof of Thm. 10, we can define a bijective
embedding es : V (T) → V (Ts) and obtain maxNO(t, tes(v)) ≥ maxNO(t, tv)+k−1
for all leaves v ∈ Leaf(T). To prove this inequation, let {π1, . . . , πk} ∈ NO(t, s) be
a witness for the k pairwise non-overlapping occurrences in s. The term s has the
form s = C[tδ] for some context C with a hole at position π1 and substitution
δ. Let π1 be the position of an outermost occurrence of t, i.e., there is no πj

with 1 ≤ j ≤ k strictly above π1. We rewrite C[tδ] according to T at position π1.
Since T is non-variable-decreasing, for every position τ ∈ PosV(t) and every leaf
v ∈ Leaf(T), there exists a (unique) position τ ′ ∈ PosV(tv) with t|τ = tv|τ ′ .

As in the proof of Thm. 10, we get tes(v) = C[tvδ]. All occurrences of t at
positions that are orthogonal to π1 are still present in tes(v). All occurrences at
a position below π1, i.e., πj = π1.κ, can be written as πj = π1.τ.β for some
position β ∈ N∗ and τ ∈ PosV(t). Moreover, since t ◀◁πj C[tδ] we get t ◀◁β δ(x)
for the variable x = t|τ . By the previous paragraph, we can find a (unique)
position τ ′ ∈ PosV(tv) with t|τ = tv|τ ′ , and therefore, all such occurrences are still
present in tes(v) = C[tvδ], because we still have t ◀◁π1.τ ′.β C[tvδ] ⇐⇒ t ◀◁β δ(x)
for the variable x = tv|τ ′ = t|τ . Note that there are no occurrences above π1

Disproving Termination of PTRSs via Random Walks 23

as it is an outermost occurrence. Thus, we obtain {π2, . . . , πk} ∈ NO(t, C[tvδ]).
Moreover, all occurrences of t in tv also exist in tvδ. Finally, the occurrences of
t in tv are non-overlapping with {π2, . . . , πk}. Hence, we get maxNO(t, tes(v)) =
maxNO(t, C[tvδ]) = maxNO(t, tvδ)+ k− 1 ≥ maxNO(t, tv)+ k− 1 as desired. The
rest of the proof (i.e., the definition of the embedding from the ↪−→µ-RST to T∞) is
as in the proof of Thm. 10. ⊓⊔

Theorem 16 (Embedding Random Walks via Occurrences (3)). Let P
be a PTRS and let T be a P-RST with h(T) > 0 and root(T) = t. If we have∑

v∈Leaf(T) pv ·maxOO(t, tv) 1, then P is not (P)AST.

Proof. Compared to the proof of Thm. 10, we now define the random walk
µ via maxOO(t, tv) instead of maxNO(t, tv). The remaining proof only differs
in the proof of the inequation maxOO(t, tes(v)) ≥ maxOO(t, tv) + k − 1, where
maxOO(t, s) = k ∈ N>0.

Let {π1, . . . , πk} ∈ NO(t, s) be a witness for the k orthogonal occurrences of t
in s. The term s has the form s = C[tδ] for some context C with a hole at position
π1 and substitution δ. We rewrite C[tδ] according to T at position π1, and get
tes(v) = C[tvδ].

All the occurrences of t at the positions π2, . . . , πk are still present, because
positions orthogonal to π1 remain in C[tvδ]. Moreover, all orthogonal occurrences
of t in tvδ are orthogonal with all occurrences at a position in {π2, . . . , πk} be-
cause they are below π1. Hence, we get maxOO(t, tes(v)) = maxOO(t, C[tvδ]) =
maxOO(t, tvδ) + k − 1 ≥ maxOO(t, tv) + k − 1 as desired. ⊓⊔

Lemma 21 (Detecting Pattern Terms). For a term t and a substitution σ,
⟨t, σ⟩ is a pattern term iff some cycle of Gσ,t contains a variable x such that xσ /∈ V.

Proof. We first show the “if” direction, i.e., we prove that the condition of Lemma 21
is sufficient. To this end, we first show that x, xσ, xσ2, . . . are all pairwise different.

Since x is on a cycle of Gσ,t, there exists a minimal k ∈ N>0 such that
x ∈ V(xσk).

If k = 1, then we have x ∈ V(xσ), i.e., xσ = C[x] for a non-empty context
C ̸= □. Thus, all xσm = Cm[x] are pairwise different for m ≥ 0.

Otherwise, if k > 1, first note that x, xσ, . . . , xσk−1 are pairwise different. The
reason is that otherwise, there would be 0 ≤ i < j ≤ k − 1 with xσi = xσj . But
this would imply xσi+k−j = xσj+k−j = xσk, which is a contradiction because
x ∈ V(xσk), but x /∈ V(xσi+k−j) due to the minimality of k.

Next, note that xσk, xσk+1, . . . , xσ2·k−1 are also pairwise different. The rea-
son is that xσk = C[x]π for a non-empty context C ≠ □. Hence, the subterms
of xσk, xσk+1, . . . , xσ2·k−1 at position π are x, xσ, . . . , xσk−1 which are pairwise
different by the observation above. Moreover, all terms xσk, xσk+1, . . . , xσ2·k−1 are
pairwise different from the terms x, xσ, . . . , xσk−1 due to the additional non-empty
contexts. By repeating this reasoning, we can infer that all terms x, xσ, xσ2, . . . are
pairwise different.

Now we need to show that all terms t, tσ, tσ2, . . . are pairwise different. By the
definition of Gσ,t, t contains a variable y at a position τ where y has a path to x in

24 J.-C. Kassing, H. Nagel, A. Schlecht, J. Giesl

Gσ,t. Let j be the length of the shortest path from y to x, i.e., j ≥ 0 is the minimal
number such that x ∈ V(yσj). Similar to the argumentation above, this implies
that y, yσ, . . . , yσj are pairwise different. By considering only the subterm of t at
position τ , this also means that t, tσ, . . . , tσj are pairwise different. As tσj contains
the variable x at some position, by considering the subterm at this position and the
argumentation above, we obtain that all terms t, tσ, . . . , tσj , tσj+1, . . . are pairwise
different.

Now we show the “only if” direction, i.e., we prove that the condition of Lemma 21
is necessary. We assume the contrary, i.e., assume that for all variables x in cycles
of Gσ,t we have xσ ∈ V. This means that for every such variable x there exists a
kx > 0 such that xσkx = x.

Moreover, xσ ∈ V implies that every variable in a cycle of Gσ,t only has one
outgoing edge. Therefore, tσ| dom(σ)| only contains variables on cycles of Gσ,t. Let
k = kx1

· . . . · kxn
where x1, . . . , xn are all variables on cycles of Gσ,t. Thus, for

all m ∈ N we have tσ| dom(σ)| = tσ| dom(σ)|+m·k, which shows that ⟨t, σ⟩ is not a
pattern term. ⊓⊔

Theorem 27 (Embedding RWs via Patterns). Let P be a PTRS, ⟨t, σ⟩ be
a pattern term, and let T be a P-pattern tree for ⟨t, σ⟩ with h(T) > 0. If we have∑

v∈Leaf(T) pv ·maxOPO(t, σ, tv) 1, then P is not (P)AST.

Proof. Compared to the proof of Thm. 16, we define the random walk µ via
maxOPO(t, σ, tv) instead of maxOO(t, tv). So we now have to prove the inequation
maxOPO(t, σ, tes(v)) ≥ maxOPO(t, σ, tv) + k − 1, where maxOPO(t, σ, s) = k > 0.

Let {π1, . . . , πh} ∈ NO(t, s) be a witness for h orthogonal occurrences in s
where the sum of multiplicities is k. The term s has the form s = C[tσmπ1 δ] for
some context C with a hole at position π1 and some substitution δ, where mπ1 > 0.
Let Ts be the tree resulting from starting with s = C[tσmπ1 δ] at the root and
by rewriting tσmπ1 δ at position π1 according to the rules used in the tree T. For
every v ∈ Leaf(T) let es(v) ∈ Leaf(Ts) be the corresponding leaf in Ts which we
get by following the same path in Ts as the path to the leaf v in T. We have
tes(v) = C[tvσ

mπ1
−1δ] = C[tv′δ] for the corresponding leaf v′ in the tree Tmπ1

that
starts with tσmπ1 and uses the same rules as in T at the same positions.

All the occurrences of ⟨t, σ⟩ at the positions π2, . . . , πh with multiplicities
mπ2

, . . . ,mπh
are still present, because they are all pairwise orthogonal. Let

{χ1, . . . , χp} be a witness for p orthogonal occurrences in tv where the sum of mul-
tiplicities is maxOPO(t, σ, tv). By the requirements on pattern trees, we have p ≥ 1.
Due to commutation, for every occurrence ⟨t, σ⟩ ◀◁

mχj
χj tv for a leaf v ∈ Leaf(T)

and every κχj ,v such that tσmχj κχj ,v = tv|χj
we have a (unique) occurrence

⟨t, σ⟩ ◀◁
mχj

+mπ1−1
χj tv′ in the corresponding leaf v′ ∈ Tmπ1

. To see this, note that

tv′ |χj = tv|χjσ
mπ1
−1 = tσmχj κχj ,vσ

mπ1
−1 = tσmχj

+mπ1
−1κχj ,v.

Disproving Termination of PTRSs via Random Walks 25

We get

maxOPO(t, σ, tv′)

=max{mS | S ∈ NO(t, s), ∀π1, π2 ∈ S with π1 ̸= π2 : π1⊥π2}

=max{
∑
χ∈S

mχ | S ∈ NO(t, s),∀π1, π2 ∈ S with π1 ̸= π2 : π1⊥π2}w� (
since {χ1, . . . , χp} is a set of orthogonal occurrences

)
≥

∑
χ∈{χ1,...,χp}

mχw� (
by the commutation property of T as described above

)
=

∑
χ∈{χ1,...,χp}

(
mχ +mπ1

− 1
)

=
(∑
χ∈{χ1,...,χp}

mχ

)
+ p · (mπ1 − 1)

w� (
since p ≥ 1 and mπ1 ≥ 1

)
≥
(∑
χ∈{χ1,...,χp}

mχ

)
+mπ1

− 1

w� (
since {χ1, . . . , χp} is a witness of the maximum

)
=max{mS | S ∈ NO(t, s),∀π1, π2 ∈ S with π1 ̸= π2 : π1⊥π2}+mπ1 − 1

=maxOPO(t, σ, tv) +mπ1 − 1.

Overall, because of tes(v) = C[tv′δ] we get

maxOPO(t, σ, tes(v))

=maxOPO(t, σ, C[tv′δ])w� (
removing δ can only decrease the number of occurrences

)
≥maxOPO(t, σ, C[tv′])w� (

since the occurrences π2, . . . , πh remain and are orthogonal
)

≥maxOPO(t, σ, tv′) +mπ2
+ . . .+mπhw� (

by the previous inequation
)

≥maxOPO(t, σ, tv) +mπ1
− 1 +mπ2

+ . . .+mπhw� (
mπ1

+mπ2
+ . . .+mπh

= k
)

=maxOPO(t, σ, tv) + k − 1

⊓⊔

	Disproving (Positive) Almost-Sure Termination of Probabilistic Term Rewriting via Random Walks

