Inferring Expected Runtimes Using Sizes


KoAT2 Proof WORST_CASE( ?, 6*(1+Arg_0)+9+62*Arg_0 {O(n)})

Initial Complexity Problem (after preprocessing)

Start:f
Program_Vars:Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars:
Locations:f, g, h, j, k
Transitions:
f(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -{0}> g(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
g(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 3/25:h(Arg_0,1,1,Arg_3,Arg_4,Arg_5) :+: 9/50:h(Arg_0,1,0,Arg_3,Arg_4,Arg_5) :+: 7/25:h(Arg_0,0,1,Arg_3,Arg_4,Arg_5) :+: 21/50:h(Arg_0,0,0,Arg_3,Arg_4,Arg_5) :|: 0<Arg_0
h(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 7/10:j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1) :+: 3/10:j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0) :|: Arg_1<1 && Arg_2<1 && Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=2 && Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0
h(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 19/20:j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1) :+: 1/20:j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0) :|: 0<Arg_2 && Arg_1<1 && Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=2 && Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0
h(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 1/10:j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1) :+: 9/10:j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0) :|: 0<Arg_1 && Arg_2<1 && Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=2 && Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0
h(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 1/2:j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1) :+: 1/2:j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0) :|: 0<Arg_1 && 0<Arg_2 && Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=2 && Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0
j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 1/20:k(Arg_0,Arg_1,Arg_2,1,Arg_4,Arg_5) :+: 19/20:k(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5) :|: Arg_1<1 && Arg_5<=1 && Arg_5<=1+Arg_2 && Arg_2+Arg_5<=2 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=2 && Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=2 && Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0
j(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 4/5:k(Arg_0,Arg_1,Arg_2,1,Arg_4,Arg_5) :+: 1/5:k(Arg_0,Arg_1,Arg_2,0,Arg_4,Arg_5) :|: 0<Arg_1 && Arg_5<=1 && Arg_5<=1+Arg_2 && Arg_2+Arg_5<=2 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=2 && Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=2 && Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0
k(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 1/10:g(Arg_0-1,Arg_1,Arg_2,Arg_3,1,Arg_5) :+: 9/10:g(Arg_0-1,Arg_1,Arg_2,Arg_3,0,Arg_5) :|: Arg_5<1 && Arg_5<=1 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=2 && Arg_5<=1+Arg_2 && Arg_2+Arg_5<=2 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=2 && Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=1 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=2 && Arg_3<=1+Arg_1 && Arg_1+Arg_3<=2 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=2 && Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0
k(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> 3/5:g(Arg_0-1,Arg_1,Arg_2,Arg_3,1,Arg_5) :+: 2/5:g(Arg_0-1,Arg_1,Arg_2,Arg_3,0,Arg_5) :|: 0<Arg_5 && Arg_5<=1 && Arg_5<=1+Arg_3 && Arg_3+Arg_5<=2 && Arg_5<=1+Arg_2 && Arg_2+Arg_5<=2 && Arg_5<=1+Arg_1 && Arg_1+Arg_5<=2 && Arg_5<=Arg_0 && 0<=Arg_5 && 0<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 0<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 0<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_3<=1 && Arg_3<=1+Arg_2 && Arg_2+Arg_3<=2 && Arg_3<=1+Arg_1 && Arg_1+Arg_3<=2 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 0<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 1<=Arg_0+Arg_3 && Arg_2<=1 && Arg_2<=1+Arg_1 && Arg_1+Arg_2<=2 && Arg_2<=Arg_0 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0

G f f g g f->g t₀ ∈ g₀ {0} h h g->h t₁ ∈ g₁ p = 3/25 η (Arg_1) = 1 η (Arg_2) = 1 τ = 0<Arg_0 g->h t₂ ∈ g₁ p = 9/50 η (Arg_1) = 1 η (Arg_2) = 0 τ = 0<Arg_0 g->h t₃ ∈ g₁ p = 7/25 η (Arg_1) = 0 η (Arg_2) = 1 τ = 0<Arg_0 g->h t₄ ∈ g₁ p = 21/50 η (Arg_1) = 0 η (Arg_2) = 0 τ = 0<Arg_0 j j h->j t₅ ∈ g₂ p = 7/10 η (Arg_5) = 1 τ = Arg_1<1 && Arg_2<1 h->j t₆ ∈ g₂ p = 3/10 η (Arg_5) = 0 τ = Arg_1<1 && Arg_2<1 h->j t₇ ∈ g₃ p = 19/20 η (Arg_5) = 1 τ = 0<Arg_2 && Arg_1<1 h->j t₈ ∈ g₃ p = 1/20 η (Arg_5) = 0 τ = 0<Arg_2 && Arg_1<1 h->j t₉ ∈ g₄ p = 1/10 η (Arg_5) = 1 τ = 0<Arg_1 && Arg_2<1 h->j t₁₀ ∈ g₄ p = 9/10 η (Arg_5) = 0 τ = 0<Arg_1 && Arg_2<1 h->j t₁₁ ∈ g₅ p = 1/2 η (Arg_5) = 1 τ = 0<Arg_1 && 0<Arg_2 h->j t₁₂ ∈ g₅ p = 1/2 η (Arg_5) = 0 τ = 0<Arg_1 && 0<Arg_2 k k j->k t₁₃ ∈ g₆ p = 1/20 η (Arg_3) = 1 τ = Arg_1<1 j->k t₁₄ ∈ g₆ p = 19/20 η (Arg_3) = 0 τ = Arg_1<1 j->k t₁₅ ∈ g₇ p = 4/5 η (Arg_3) = 1 τ = 0<Arg_1 j->k t₁₆ ∈ g₇ p = 1/5 η (Arg_3) = 0 τ = 0<Arg_1 k->g t₁₇ ∈ g₈ p = 1/10 η (Arg_0) = Arg_0-1 η (Arg_4) = 1 τ = Arg_5<1 k->g t₁₈ ∈ g₈ p = 9/10 η (Arg_0) = Arg_0-1 η (Arg_4) = 0 τ = Arg_5<1 k->g t₁₉ ∈ g₉ p = 3/5 η (Arg_0) = Arg_0-1 η (Arg_4) = 1 τ = 0<Arg_5 k->g t₂₀ ∈ g₉ p = 2/5 η (Arg_0) = Arg_0-1 η (Arg_4) = 0 τ = 0<Arg_5

Timebounds:

Overall timebound:5*max([0, Arg_0])+7*max([0, 1+Arg_0])+max([0, 1+11*Arg_0])+max([0, 1+2*Arg_0])+max([0, 1+7*Arg_0])+max([0, 19*Arg_0])+max([0, 2*Arg_0])+max([0, 4+7*Arg_0])+max([0, 7*Arg_0])+max([1, 2+Arg_0]) {O(n)}
0,0: f->g: 1 {O(1)}
1,1: g->h: max([0, 1+Arg_0]) {O(n)}
2,1: g->h: max([0, 1+Arg_0]) {O(n)}
3,1: g->h: max([0, 1+7*Arg_0]) {O(n)}
4,1: g->h: max([0, 1+2*Arg_0]) {O(n)}
5,2: h->j: max([0, 1+Arg_0]) {O(n)}
6,2: h->j: max([0, 4+7*Arg_0]) {O(n)}
7,3: h->j: max([0, 1+Arg_0]) {O(n)}
8,3: h->j: max([0, 1+Arg_0]) {O(n)}
9,4: h->j: max([0, 1+Arg_0]) {O(n)}
10,4: h->j: max([0, 1+Arg_0]) {O(n)}
11,5: h->j: max([0, 1+Arg_0]) {O(n)}
12,5: h->j: max([0, 1+11*Arg_0]) {O(n)}
13,6: j->k: max([0, Arg_0]) {O(n)}
14,6: j->k: max([0, Arg_0]) {O(n)}
15,7: j->k: max([0, Arg_0]) {O(n)}
16,7: j->k: max([0, Arg_0]) {O(n)}
17,8: k->g: max([0, Arg_0]) {O(n)}
18,8: k->g: max([0, 7*Arg_0]) {O(n)}
19,9: k->g: max([0, 2*Arg_0]) {O(n)}
20,9: k->g: max([0, 19*Arg_0]) {O(n)}

Expected Timebounds:

Overall expected timebound: 10+6*(1+Arg_0)+62*Arg_0 {O(n)}
0: f->[1:g]: 1 {O(1)}
1: g->[3/25:h; 9/50:h; 7/25:h; 21/50:h]: 2+2*(1+Arg_0)+9*Arg_0 {O(n)}
2: h->[7/10:j; 3/10:j]: 5+8*Arg_0 {O(n)}
3: h->[19/20:j; 1/20:j]: 2*(1+Arg_0) {O(n)}
4: h->[1/10:j; 9/10:j]: 2*(1+Arg_0) {O(n)}
5: h->[1/2:j; 1/2:j]: 12*Arg_0+2 {O(n)}
6: j->[1/20:k; 19/20:k]: 2*Arg_0 {O(n)}
7: j->[4/5:k; 1/5:k]: 2*Arg_0 {O(n)}
8: k->[1/10:g; 9/10:g]: 8*Arg_0 {O(n)}
9: k->[3/5:g; 2/5:g]: 21*Arg_0 {O(n)}

Costbounds:

Overall costbound: inf {Infinity}
0,0: f->g: inf {Infinity}
1,1: g->h: inf {Infinity}
2,1: g->h: inf {Infinity}
3,1: g->h: inf {Infinity}
4,1: g->h: inf {Infinity}
5,2: h->j: inf {Infinity}
6,2: h->j: inf {Infinity}
7,3: h->j: inf {Infinity}
8,3: h->j: inf {Infinity}
9,4: h->j: inf {Infinity}
10,4: h->j: inf {Infinity}
11,5: h->j: inf {Infinity}
12,5: h->j: inf {Infinity}
13,6: j->k: inf {Infinity}
14,6: j->k: inf {Infinity}
15,7: j->k: inf {Infinity}
16,7: j->k: inf {Infinity}
17,8: k->g: inf {Infinity}
18,8: k->g: inf {Infinity}
19,9: k->g: inf {Infinity}
20,9: k->g: inf {Infinity}

Expected Costbounds:

Overall expected costbound: 6*(1+Arg_0)+9+62*Arg_0 {O(n)}
0: f->[1:g]: 0 {O(1)}
1: g->[3/25:h; 9/50:h; 7/25:h; 21/50:h]: 2+2*(1+Arg_0)+9*Arg_0 {O(n)}
2: h->[7/10:j; 3/10:j]: 5+8*Arg_0 {O(n)}
3: h->[19/20:j; 1/20:j]: 2*(1+Arg_0) {O(n)}
4: h->[1/10:j; 9/10:j]: 2*(1+Arg_0) {O(n)}
5: h->[1/2:j; 1/2:j]: 12*Arg_0+2 {O(n)}
6: j->[1/20:k; 19/20:k]: 2*Arg_0 {O(n)}
7: j->[4/5:k; 1/5:k]: 2*Arg_0 {O(n)}
8: k->[1/10:g; 9/10:g]: 8*Arg_0 {O(n)}
9: k->[3/5:g; 2/5:g]: 21*Arg_0 {O(n)}

Sizebounds:

0,0: f->g, Arg_0: Arg_0 {O(n)}
0,0: f->g, Arg_1: Arg_1 {O(n)}
0,0: f->g, Arg_2: Arg_2 {O(n)}
0,0: f->g, Arg_3: Arg_3 {O(n)}
0,0: f->g, Arg_4: Arg_4 {O(n)}
0,0: f->g, Arg_5: Arg_5 {O(n)}
1,1: g->h, Arg_0: Arg_0 {O(n)}
1,1: g->h, Arg_1: 1 {O(1)}
1,1: g->h, Arg_2: 1 {O(1)}
1,1: g->h, Arg_3: max([1, Arg_3]) {O(n)}
1,1: g->h, Arg_4: max([1, Arg_4]) {O(n)}
1,1: g->h, Arg_5: max([1, Arg_5]) {O(n)}
2,1: g->h, Arg_0: Arg_0 {O(n)}
2,1: g->h, Arg_1: 1 {O(1)}
2,1: g->h, Arg_2: 0 {O(1)}
2,1: g->h, Arg_3: max([1, Arg_3]) {O(n)}
2,1: g->h, Arg_4: max([1, Arg_4]) {O(n)}
2,1: g->h, Arg_5: max([1, Arg_5]) {O(n)}
3,1: g->h, Arg_0: Arg_0 {O(n)}
3,1: g->h, Arg_1: 0 {O(1)}
3,1: g->h, Arg_2: 1 {O(1)}
3,1: g->h, Arg_3: max([1, Arg_3]) {O(n)}
3,1: g->h, Arg_4: max([1, Arg_4]) {O(n)}
3,1: g->h, Arg_5: max([1, Arg_5]) {O(n)}
4,1: g->h, Arg_0: Arg_0 {O(n)}
4,1: g->h, Arg_1: 0 {O(1)}
4,1: g->h, Arg_2: 0 {O(1)}
4,1: g->h, Arg_3: max([1, Arg_3]) {O(n)}
4,1: g->h, Arg_4: max([1, Arg_4]) {O(n)}
4,1: g->h, Arg_5: max([1, Arg_5]) {O(n)}
5,2: h->j, Arg_0: Arg_0 {O(n)}
5,2: h->j, Arg_1: 0 {O(1)}
5,2: h->j, Arg_2: 0 {O(1)}
5,2: h->j, Arg_3: max([1, Arg_3]) {O(n)}
5,2: h->j, Arg_4: max([1, Arg_4]) {O(n)}
5,2: h->j, Arg_5: 1 {O(1)}
6,2: h->j, Arg_0: Arg_0 {O(n)}
6,2: h->j, Arg_1: 0 {O(1)}
6,2: h->j, Arg_2: 0 {O(1)}
6,2: h->j, Arg_3: max([1, Arg_3]) {O(n)}
6,2: h->j, Arg_4: max([1, Arg_4]) {O(n)}
6,2: h->j, Arg_5: 0 {O(1)}
7,3: h->j, Arg_0: Arg_0 {O(n)}
7,3: h->j, Arg_1: 0 {O(1)}
7,3: h->j, Arg_2: 1 {O(1)}
7,3: h->j, Arg_3: max([1, Arg_3]) {O(n)}
7,3: h->j, Arg_4: max([1, Arg_4]) {O(n)}
7,3: h->j, Arg_5: 1 {O(1)}
8,3: h->j, Arg_0: Arg_0 {O(n)}
8,3: h->j, Arg_1: 0 {O(1)}
8,3: h->j, Arg_2: 1 {O(1)}
8,3: h->j, Arg_3: max([1, Arg_3]) {O(n)}
8,3: h->j, Arg_4: max([1, Arg_4]) {O(n)}
8,3: h->j, Arg_5: 0 {O(1)}
9,4: h->j, Arg_0: Arg_0 {O(n)}
9,4: h->j, Arg_1: 1 {O(1)}
9,4: h->j, Arg_2: 0 {O(1)}
9,4: h->j, Arg_3: max([1, Arg_3]) {O(n)}
9,4: h->j, Arg_4: max([1, Arg_4]) {O(n)}
9,4: h->j, Arg_5: 1 {O(1)}
10,4: h->j, Arg_0: Arg_0 {O(n)}
10,4: h->j, Arg_1: 1 {O(1)}
10,4: h->j, Arg_2: 0 {O(1)}
10,4: h->j, Arg_3: max([1, Arg_3]) {O(n)}
10,4: h->j, Arg_4: max([1, Arg_4]) {O(n)}
10,4: h->j, Arg_5: 0 {O(1)}
11,5: h->j, Arg_0: Arg_0 {O(n)}
11,5: h->j, Arg_1: 1 {O(1)}
11,5: h->j, Arg_2: 1 {O(1)}
11,5: h->j, Arg_3: max([1, Arg_3]) {O(n)}
11,5: h->j, Arg_4: max([1, Arg_4]) {O(n)}
11,5: h->j, Arg_5: 1 {O(1)}
12,5: h->j, Arg_0: Arg_0 {O(n)}
12,5: h->j, Arg_1: 1 {O(1)}
12,5: h->j, Arg_2: 1 {O(1)}
12,5: h->j, Arg_3: max([1, Arg_3]) {O(n)}
12,5: h->j, Arg_4: max([1, Arg_4]) {O(n)}
12,5: h->j, Arg_5: 0 {O(1)}
13,6: j->k, Arg_0: Arg_0 {O(n)}
13,6: j->k, Arg_1: 0 {O(1)}
13,6: j->k, Arg_2: 1 {O(1)}
13,6: j->k, Arg_3: 1 {O(1)}
13,6: j->k, Arg_4: max([1, Arg_4]) {O(n)}
13,6: j->k, Arg_5: 1 {O(1)}
14,6: j->k, Arg_0: Arg_0 {O(n)}
14,6: j->k, Arg_1: 0 {O(1)}
14,6: j->k, Arg_2: 1 {O(1)}
14,6: j->k, Arg_3: 0 {O(1)}
14,6: j->k, Arg_4: max([1, Arg_4]) {O(n)}
14,6: j->k, Arg_5: 1 {O(1)}
15,7: j->k, Arg_0: Arg_0 {O(n)}
15,7: j->k, Arg_1: 1 {O(1)}
15,7: j->k, Arg_2: 1 {O(1)}
15,7: j->k, Arg_3: 1 {O(1)}
15,7: j->k, Arg_4: max([1, Arg_4]) {O(n)}
15,7: j->k, Arg_5: 1 {O(1)}
16,7: j->k, Arg_0: Arg_0 {O(n)}
16,7: j->k, Arg_1: 1 {O(1)}
16,7: j->k, Arg_2: 1 {O(1)}
16,7: j->k, Arg_3: 0 {O(1)}
16,7: j->k, Arg_4: max([1, Arg_4]) {O(n)}
16,7: j->k, Arg_5: 1 {O(1)}
17,8: k->g, Arg_0: Arg_0 {O(n)}
17,8: k->g, Arg_1: 1 {O(1)}
17,8: k->g, Arg_2: 1 {O(1)}
17,8: k->g, Arg_3: 1 {O(1)}
17,8: k->g, Arg_4: 1 {O(1)}
17,8: k->g, Arg_5: 0 {O(1)}
18,8: k->g, Arg_0: Arg_0 {O(n)}
18,8: k->g, Arg_1: 1 {O(1)}
18,8: k->g, Arg_2: 1 {O(1)}
18,8: k->g, Arg_3: 1 {O(1)}
18,8: k->g, Arg_4: 0 {O(1)}
18,8: k->g, Arg_5: 0 {O(1)}
19,9: k->g, Arg_0: Arg_0 {O(n)}
19,9: k->g, Arg_1: 1 {O(1)}
19,9: k->g, Arg_2: 1 {O(1)}
19,9: k->g, Arg_3: 1 {O(1)}
19,9: k->g, Arg_4: 1 {O(1)}
19,9: k->g, Arg_5: 1 {O(1)}
20,9: k->g, Arg_0: Arg_0 {O(n)}
20,9: k->g, Arg_1: 1 {O(1)}
20,9: k->g, Arg_2: 1 {O(1)}
20,9: k->g, Arg_3: 1 {O(1)}
20,9: k->g, Arg_4: 0 {O(1)}
20,9: k->g, Arg_5: 1 {O(1)}

ExpSizeBounds:

(0: f->[1:g], g), Arg_0: Arg_0 {O(n)}
(0: f->[1:g], g), Arg_1: Arg_1 {O(n)}
(0: f->[1:g], g), Arg_2: Arg_2 {O(n)}
(0: f->[1:g], g), Arg_3: Arg_3 {O(n)}
(0: f->[1:g], g), Arg_4: Arg_4 {O(n)}
(0: f->[1:g], g), Arg_5: Arg_5 {O(n)}
(1: g->[3/25:h; 9/50:h; 7/25:h; 21/50:h], h), Arg_0: Arg_0 {O(n)}
(1: g->[3/25:h; 9/50:h; 7/25:h; 21/50:h], h), Arg_1: 1 {O(1)}
(1: g->[3/25:h; 9/50:h; 7/25:h; 21/50:h], h), Arg_2: 1 {O(1)}
(1: g->[3/25:h; 9/50:h; 7/25:h; 21/50:h], h), Arg_3: max([1, Arg_3]) {O(n)}
(1: g->[3/25:h; 9/50:h; 7/25:h; 21/50:h], h), Arg_4: max([1, Arg_4]) {O(n)}
(1: g->[3/25:h; 9/50:h; 7/25:h; 21/50:h], h), Arg_5: max([1, Arg_5]) {O(n)}
(2: h->[7/10:j; 3/10:j], j), Arg_0: Arg_0 {O(n)}
(2: h->[7/10:j; 3/10:j], j), Arg_1: 0 {O(1)}
(2: h->[7/10:j; 3/10:j], j), Arg_2: 0 {O(1)}
(2: h->[7/10:j; 3/10:j], j), Arg_3: max([1, Arg_3]) {O(n)}
(2: h->[7/10:j; 3/10:j], j), Arg_4: max([1, Arg_4]) {O(n)}
(2: h->[7/10:j; 3/10:j], j), Arg_5: 1 {O(1)}
(3: h->[19/20:j; 1/20:j], j), Arg_0: Arg_0 {O(n)}
(3: h->[19/20:j; 1/20:j], j), Arg_1: 0 {O(1)}
(3: h->[19/20:j; 1/20:j], j), Arg_2: 1 {O(1)}
(3: h->[19/20:j; 1/20:j], j), Arg_3: max([1, Arg_3]) {O(n)}
(3: h->[19/20:j; 1/20:j], j), Arg_4: max([1, Arg_4]) {O(n)}
(3: h->[19/20:j; 1/20:j], j), Arg_5: 1 {O(1)}
(4: h->[1/10:j; 9/10:j], j), Arg_0: Arg_0 {O(n)}
(4: h->[1/10:j; 9/10:j], j), Arg_1: 1 {O(1)}
(4: h->[1/10:j; 9/10:j], j), Arg_2: 0 {O(1)}
(4: h->[1/10:j; 9/10:j], j), Arg_3: max([1, Arg_3]) {O(n)}
(4: h->[1/10:j; 9/10:j], j), Arg_4: max([1, Arg_4]) {O(n)}
(4: h->[1/10:j; 9/10:j], j), Arg_5: 1 {O(1)}
(5: h->[1/2:j; 1/2:j], j), Arg_0: Arg_0 {O(n)}
(5: h->[1/2:j; 1/2:j], j), Arg_1: 1 {O(1)}
(5: h->[1/2:j; 1/2:j], j), Arg_2: 1 {O(1)}
(5: h->[1/2:j; 1/2:j], j), Arg_3: max([1, Arg_3]) {O(n)}
(5: h->[1/2:j; 1/2:j], j), Arg_4: max([1, Arg_4]) {O(n)}
(5: h->[1/2:j; 1/2:j], j), Arg_5: 1 {O(1)}
(6: j->[1/20:k; 19/20:k], k), Arg_0: Arg_0 {O(n)}
(6: j->[1/20:k; 19/20:k], k), Arg_1: 0 {O(1)}
(6: j->[1/20:k; 19/20:k], k), Arg_2: 1 {O(1)}
(6: j->[1/20:k; 19/20:k], k), Arg_3: 1 {O(1)}
(6: j->[1/20:k; 19/20:k], k), Arg_4: max([1, Arg_4]) {O(n)}
(6: j->[1/20:k; 19/20:k], k), Arg_5: 1 {O(1)}
(7: j->[4/5:k; 1/5:k], k), Arg_0: Arg_0 {O(n)}
(7: j->[4/5:k; 1/5:k], k), Arg_1: 1 {O(1)}
(7: j->[4/5:k; 1/5:k], k), Arg_2: 1 {O(1)}
(7: j->[4/5:k; 1/5:k], k), Arg_3: 1 {O(1)}
(7: j->[4/5:k; 1/5:k], k), Arg_4: max([1, Arg_4]) {O(n)}
(7: j->[4/5:k; 1/5:k], k), Arg_5: 1 {O(1)}
(8: k->[1/10:g; 9/10:g], g), Arg_0: Arg_0 {O(n)}
(8: k->[1/10:g; 9/10:g], g), Arg_1: 1 {O(1)}
(8: k->[1/10:g; 9/10:g], g), Arg_2: 1 {O(1)}
(8: k->[1/10:g; 9/10:g], g), Arg_3: 1 {O(1)}
(8: k->[1/10:g; 9/10:g], g), Arg_4: 1 {O(1)}
(8: k->[1/10:g; 9/10:g], g), Arg_5: 0 {O(1)}
(9: k->[3/5:g; 2/5:g], g), Arg_0: Arg_0 {O(n)}
(9: k->[3/5:g; 2/5:g], g), Arg_1: 1 {O(1)}
(9: k->[3/5:g; 2/5:g], g), Arg_2: 1 {O(1)}
(9: k->[3/5:g; 2/5:g], g), Arg_3: 1 {O(1)}
(9: k->[3/5:g; 2/5:g], g), Arg_4: 1 {O(1)}
(9: k->[3/5:g; 2/5:g], g), Arg_5: 1 {O(1)}