Initial Complexity Problem (after preprocessing)
Start:fProgram_Vars:Arg_0, Arg_1
Temp_Vars:
Locations:f, g, h
Transitions:
f(Arg_0,Arg_1) -> g(Arg_0,Arg_1)
g(Arg_0,Arg_1) -> h(Uniform (-1, 0),Arg_0) :|: 0<Arg_0
h(Arg_0,Arg_1) -> 1/4:h(Arg_0,Arg_1) :+: 3/4:h(Arg_0,Arg_1-1) :|: 0<Arg_1 && Arg_1<=1+Arg_0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0
h(Arg_0,Arg_1) -> g(Arg_0,Arg_1) :|: Arg_1<1 && Arg_1<=1+Arg_0 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0
Timebounds:
Overall timebound:inf {Infinity}0,0: f->g: 1 {O(1)}
1,1: g->h: inf {Infinity}
2,2: h->h: inf {Infinity}
3,2: h->h: inf {Infinity}
4,3: h->g: inf {Infinity}
Expected Timebounds:
Overall expected timebound: inf {Infinity}0: f->[1:g]: 1 {O(1)}
1: g->[1:h]: 2*Arg_0 {O(n)}
2: h->[1/4:h; 3/4:h]: inf {Infinity}
3: h->[1:g]: 2*Arg_0 {O(n)}
Costbounds:
Overall costbound: inf {Infinity}0,0: f->g: inf {Infinity}
1,1: g->h: inf {Infinity}
2,2: h->h: inf {Infinity}
3,2: h->h: inf {Infinity}
4,3: h->g: inf {Infinity}
Expected Costbounds:
Overall expected costbound: inf {Infinity}0: f->[1:g]: 1 {O(1)}
1: g->[1:h]: 2*Arg_0 {O(n)}
2: h->[1/4:h; 3/4:h]: inf {Infinity}
3: h->[1:g]: 2*Arg_0 {O(n)}
Sizebounds:
0,0: f->g, Arg_0: Arg_0 {O(n)}0,0: f->g, Arg_1: Arg_1 {O(n)}
1,1: g->h, Arg_0: Arg_0 {O(n)}
1,1: g->h, Arg_1: Arg_0 {O(n)}
2,2: h->h, Arg_0: Arg_0 {O(n)}
2,2: h->h, Arg_1: Arg_0 {O(n)}
3,2: h->h, Arg_0: Arg_0 {O(n)}
3,2: h->h, Arg_1: Arg_0 {O(n)}
4,3: h->g, Arg_0: Arg_0 {O(n)}
4,3: h->g, Arg_1: 0 {O(1)}
ExpSizeBounds:
(0: f->[1:g], g), Arg_0: Arg_0 {O(n)}(0: f->[1:g], g), Arg_1: Arg_1 {O(n)}
(1: g->[1:h], h), Arg_0: Arg_0 {O(n)}
(1: g->[1:h], h), Arg_1: Arg_0 {O(n)}
(2: h->[1/4:h; 3/4:h], h), Arg_0: Arg_0 {O(n)}
(2: h->[1/4:h; 3/4:h], h), Arg_1: Arg_0 {O(n)}
(3: h->[1:g], g), Arg_0: Arg_0 {O(n)}
(3: h->[1:g], g), Arg_1: 0 {O(1)}