Inferring Expected Runtimes Using Sizes


KoAT2 Proof WORST_CASE( ?, 8/3*Arg_0+8/3*Arg_3 {O(n)})

Initial Complexity Problem (after preprocessing)

Start:f
Program_Vars:Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations:f, g, h
Transitions:
f(Arg_0,Arg_1,Arg_2,Arg_3) -{0}> g(Arg_0,Arg_1,Arg_2,Arg_3)
g(Arg_0,Arg_1,Arg_2,Arg_3) -{0}> h(Arg_0,Arg_1,Arg_2,Arg_3) :|: Arg_0+3<=Arg_3
h(Arg_0,Arg_1,Arg_2,Arg_3) -> g(Uniform (0, 1),Arg_1,Arg_2,Arg_3) :|: Arg_1<Arg_2 && 3+Arg_0<=Arg_3
h(Arg_0,Arg_1,Arg_2,Arg_3) -> g(Uniform (0, 3),Arg_1,Arg_2,Arg_3) :|: Arg_2<=Arg_1 && 3+Arg_0<=Arg_3

G f f g g f->g t₀ ∈ g₀ {0} h h g->h t₁ ∈ g₁ τ = Arg_0+3<=Arg_3 {0} h->g t₂ ∈ g₂ η (Arg_0) = Uniform (0, 1) τ = Arg_1<Arg_2 h->g t₃ ∈ g₃ η (Arg_0) = Uniform (0, 3) τ = Arg_2<=Arg_1

Timebounds:

Overall timebound:inf {Infinity}
0,0: f->g: 1 {O(1)}
1,1: g->h: inf {Infinity}
2,2: h->g: inf {Infinity}
3,3: h->g: inf {Infinity}

Expected Timebounds:

Overall expected timebound: 14/3*Arg_0+2+14/3*Arg_3 {O(n)}
0: f->[1:g]: 1 {O(1)}
1: g->[1:h]: 1+2*Arg_0+2*Arg_3 {O(n)}
2: h->[1:g]: 2*Arg_0+2*Arg_3 {O(n)}
3: h->[1:g]: 2/3*Arg_0+2/3*Arg_3 {O(n)}

Costbounds:

Overall costbound: inf {Infinity}
0,0: f->g: inf {Infinity}
1,1: g->h: inf {Infinity}
2,2: h->g: inf {Infinity}
3,3: h->g: inf {Infinity}

Expected Costbounds:

Overall expected costbound: 8/3*Arg_0+8/3*Arg_3 {O(n)}
0: f->[1:g]: 0 {O(1)}
1: g->[1:h]: 0 {O(1)}
2: h->[1:g]: 2*Arg_0+2*Arg_3 {O(n)}
3: h->[1:g]: 2/3*Arg_0+2/3*Arg_3 {O(n)}

Sizebounds:

0,0: f->g, Arg_0: Arg_0 {O(n)}
0,0: f->g, Arg_1: Arg_1 {O(n)}
0,0: f->g, Arg_2: Arg_2 {O(n)}
0,0: f->g, Arg_3: Arg_3 {O(n)}
1,1: g->h, Arg_1: Arg_1 {O(n)}
1,1: g->h, Arg_2: Arg_2 {O(n)}
1,1: g->h, Arg_3: Arg_3 {O(n)}
2,2: h->g, Arg_1: Arg_1 {O(n)}
2,2: h->g, Arg_2: Arg_2 {O(n)}
2,2: h->g, Arg_3: Arg_3 {O(n)}
3,3: h->g, Arg_1: Arg_1 {O(n)}
3,3: h->g, Arg_2: Arg_2 {O(n)}
3,3: h->g, Arg_3: Arg_3 {O(n)}

ExpSizeBounds:

(0: f->[1:g], g), Arg_0: Arg_0 {O(n)}
(0: f->[1:g], g), Arg_1: Arg_1 {O(n)}
(0: f->[1:g], g), Arg_2: Arg_2 {O(n)}
(0: f->[1:g], g), Arg_3: Arg_3 {O(n)}
(1: g->[1:h], h), Arg_0: 1/2*(2*Arg_0+2*Arg_3)+Arg_0+3/2*(2/3*Arg_0+2/3*Arg_3) {O(n)}
(1: g->[1:h], h), Arg_1: Arg_1 {O(n)}
(1: g->[1:h], h), Arg_2: Arg_2 {O(n)}
(1: g->[1:h], h), Arg_3: Arg_3 {O(n)}
(2: h->[1:g], g), Arg_0: 1/2*(2*Arg_0+2*Arg_3)+Arg_0+3/2*(2/3*Arg_0+2/3*Arg_3) {O(n)}
(2: h->[1:g], g), Arg_1: Arg_1 {O(n)}
(2: h->[1:g], g), Arg_2: Arg_2 {O(n)}
(2: h->[1:g], g), Arg_3: Arg_3 {O(n)}
(3: h->[1:g], g), Arg_0: 1/2*(2*Arg_0+2*Arg_3)+Arg_0+3/2*(2/3*Arg_0+2/3*Arg_3) {O(n)}
(3: h->[1:g], g), Arg_1: Arg_1 {O(n)}
(3: h->[1:g], g), Arg_2: Arg_2 {O(n)}
(3: h->[1:g], g), Arg_3: Arg_3 {O(n)}