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Abstract
The dependency pair (DP) framework is one of the most powerful

techniques for automatic termination and complexity analysis of

term rewrite systems. While DPs were extended to prove almost-

sure termination of probabilistic term rewrite systems (PTRSs),

automatic complexity analysis for PTRSs is largely unexplored. We

introduce the first DP framework for analyzing expected complexity

and for proving positive or strong almost-sure termination (SAST)
of innermost rewriting with PTRSs, i.e., finite expected runtime. We

implemented our framework in the tool AProVE and demonstrate

its power compared to existing techniques for proving SAST.

CCS Concepts
• Theory of computation→ Equational logic and rewriting;
Probabilistic computation; Program analysis.
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1 Introduction
Probabilistic programming integrates probabilistic branching into

traditional computer models, with applications in many areas [24].

Probabilities do not only handle uncertainty in data, but they can

also be used to decrease the expected runtime of algorithms.

Term rewriting [9] is a fundamental concept to transform and

evaluate expressions, which is used, e.g., for symbolic computation,

automated theorem proving, and automatic program analysis. There

exist many approaches to prove termination or infer bounds on

the runtime complexity of TRSs, for example, via ranking functions
like polynomial interpretations [44]. One of the most powerful

approaches to analyze termination and runtime complexity of TRSs
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is the dependency pair (DP) framework, see, e.g., [3, 4, 21, 26, 53]. It

uses a divide-and-conquer approach to transform termination or

complexity problems into simpler subproblems repeatedly (via so-

called DP processors). Indeed, DPs are used in essentially all current

termination and complexity tools for TRSs, e.g., AProVE [22],MU-
TERM [25], NaTT [57], TcT [5], TTT2 [41], etc.

Probabilistic TRSs (PTRSs) have been introduced in [7, 13, 14]. A

PTRS R is almost-surely terminating (AST) if every evaluation (or

“reduction”) terminates with probability 1. A strictly stronger notion

is positive AST (PAST), where every reduction must consist of a finite

expected number of rewrite steps. An even stronger notion is strong
AST (SAST) which requires that the expected number of rewrite steps

is bounded by a finite value for every start term. It is well known

that SAST implies PAST and that PAST implies AST. In this paper, we

develop an approach to prove SAST for PTRSs under an innermost

evaluation strategy where we only consider reductions starting

with basic terms (which represent the application of an algorithm

to data objects). Moreover, our approach computes upper bounds

on the expected innermost runtime complexity of PTRSs. Runtime
complexity is one of the standard notions of complexity for non-

probabilistic TRSs [27], and it was adapted to expected runtime
complexity for PTRSs in [35].

RelatedWork: There are numerous techniques to prove (P)AST
for imperative programs on numbers, e.g., [1, 2, 8, 15, 16, 18, 29–
31, 46–52]. In particular, there also exist several tools to analyze

(P)AST and expected costs for imperative probabilistic programs,

e.g., Absynth [52], Amber [51], Eco-Imp [8], and KoAT [46, 50]. In

addition, there are also several related approaches for recursive pro-

grams, e.g., to analyze probabilistic higher-order programs based on

types ormartingales [6, 11, 39, 42, 43, 54], or probabilistic imperative

languages with recursion [40]. However, only few approaches

analyze probabilistic programs on recursive data structures, e.g.,
[10, 45, 56]. While [10] uses pointers to represent data structures

like tables and lists, [45, 56] consider a probabilistic programming

language with matching similar to term rewriting and develop an

automatic amortized resource analysis via fixed template potential

functions. However, these works are mostly targeted towards spe-

cific data structures, whereas our aim is a fully automatic approach

for general PTRSs that can model arbitrary data structures.

Currently, the only approach to analyze SAST of PTRSs automat-

ically is the direct application of polynomial or matrix interpreta-

tions [17] to the whole PTRS [7], implemented in NaTT. However,
already for non-probabilistic TRSs such a direct application of or-

derings is limited in power. For a powerful approach, one should

combine orderings in a modular way, as in the DP framework.
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Therefore, we already adapted the DP framework to the proba-

bilistic setting in order to prove AST, both for innermost [32, 36] and

full rewriting [37]. Moreover, in the non-probabilistic setting, DPs

were extended to analyze complexity instead of just termination,

see, e.g., [4, 53]. But up to now there did not exist any DP framework

to prove SAST or PAST, or to infer bounds on the expected runtime

of PTRSs. In this paper we show that the DP framework for AST
from [36] which uses annotated dependency pairs can be lifted to a

novel DP framework for expected complexity of PTRSs.

Moreover, in [34] we presented criteria for classes of PTRSs

where (P)AST for innermost rewriting implies (P)AST for full

rewriting, and in [35] these criteria were extended to SAST and

expected runtime complexity. Thus, they can also be used in order

to infer SAST and expected runtime complexity for full instead of

innermost rewriting via our novel DP framework, see Sect. 5.

Main Results of the Paper:
• We develop the first DP framework for SAST and expected

innermost runtime complexity of probabilistic TRSs.

• We introduce several processors for our novel DP framework.

• To evaluate the power of our novel framework, we imple-

mented it in the tool AProVE.

Structure: We recapitulate (probabilistic) term rewriting in

Sect. 2. In Sect. 3, we introduce our novel DP framework for SAST
and expected runtime complexity. Afterwards, we present several

processors that can be used in our framework in Sect. 4. In Sect. 5,

we give experimental results, also in comparison to the technique

of [7]. The proofs of all our results can be found in Sect. A.

2 Preliminaries
We recapitulate ordinary and probabilistic TRSs in Sect. 2.1 and 2.2.

2.1 Term Rewriting
We assume some familiarity with term rewriting [9], but recapitu-

late all needed notions. For any relation → ⊆ 𝐴 ×𝐴 on a set 𝐴 and

𝑛 ∈ N, we define→𝑛
as→0 = {(𝑎, 𝑎) | 𝑎 ∈ 𝐴} and→𝑛+1 =→𝑛 ◦

→, where “◦” denotes composition of relations. Moreover, →∗=⋃
𝑛∈N →𝑛

, i.e.,→∗
is the reflexive and transitive closure of→.

The set T = T (Σ,V) of all terms over a finite set of function
symbols Σ =

⊎
𝑘∈N Σ𝑘 and a (possibly infinite) set of variables V

is the smallest set with V ⊆ T , and if 𝑓 ∈ Σ𝑘 and 𝑡1, . . . , 𝑡𝑘 ∈ T
then 𝑓 (𝑡1, . . . , 𝑡𝑘 ) ∈ T . The arity of a function symbol 𝑓 ∈ Σ𝑘 is 𝑘 .

For example, consider the signature Σq = {q, start, s, 0}, where 0
has arity 0, s has arity 1, start has arity 2, and q has arity 3. Then,

for 𝑥 ∈ V , start(s(0), s(0)) and q(0, 𝑥, 𝑥) are terms in T
(
Σq,V

)
. A

term without variables is called a ground term. The size |𝑡 | of a term
𝑡 is the number of occurrences of function symbols and variables

in 𝑡 , i.e., |𝑡 | = 1 if 𝑡 ∈ V , and |𝑡 | = 1 +∑𝑘
𝑗=1 |𝑡 𝑗 | if 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑘 ).

Thus, |start(s(0), s(0)) | = 5 and |q(0, 𝑥, 𝑥) | = 4. A substitution is

a function 𝜎 : V → T with 𝜎 (𝑥) = 𝑥 for all but finitely many

𝑥 ∈ V , and we often write 𝑥𝜎 instead of 𝜎 (𝑥). Substitutions ho-
momorphically extend to terms: If 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑘 ) ∈ T then

𝑡𝜎 = 𝑓 (𝑡1𝜎, . . . , 𝑡𝑘𝜎). Thus, for a substitution 𝜎 with 𝜎 (𝑥) = s(𝑥)
we obtain q(0, 𝑥, 𝑥)𝜎 = q(0, s(𝑥), s(𝑥)). For any term 𝑡 ∈ T , the set

of positions Pos(𝑡) is the smallest subset of N∗
satisfying 𝜀 ∈ Pos(𝑡),

and if 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑘 ) then for all 1 ≤ 𝑗 ≤ 𝑘 and all 𝜋 ∈ Pos(𝑡 𝑗 ) we
have 𝑗 .𝜋 ∈ Pos(𝑡). A position 𝜋1 is above 𝜋2 if 𝜋1 is a prefix of 𝜋2. If

𝜋 ∈ Pos(𝑡) then 𝑡 |𝜋 denotes the subterm starting at position 𝜋 and

𝑡 [𝑟 ]𝜋 denotes the term that results from replacing the subterm 𝑡 |𝜋
at position 𝜋 with the term 𝑟 ∈ T . We write 𝑠 ⊴ 𝑡 if 𝑠 is a subterm

of 𝑡 and 𝑠 ⊳ 𝑡 if 𝑠 is a proper subterm of 𝑡 (i.e., if 𝑠 ⊴ 𝑡 and 𝑠 ≠ 𝑡 ).

For example, we have Pos(q(0, 𝑥, 𝑥)) = {𝜀, 1, 2, 3}, q(0, 𝑥, 𝑥) |2 = 𝑥 ,

q(0, 𝑥, 𝑥) [s(𝑥)]2 = q(0, s(𝑥), 𝑥), and s(𝑥) ⊳ q(0, s(𝑥), 𝑥).
A rewrite rule ℓ → 𝑟 is a pair of terms (ℓ, 𝑟 ) ∈ T × T such

that V(𝑟 ) ⊆ V(ℓ) and ℓ ∉ V , where V(𝑡) denotes the set of all
variables occurring in 𝑡 ∈ T . A term rewrite system (TRS) is a finite

set of rewrite rules. As an example, consider the following TRS

Rq that is used to compute the rounded quotient of two natural

numbers (represented by the successor function s and 0) [3].

start(𝑥,𝑦) → q(𝑥,𝑦,𝑦) q(𝑥, 0, s(𝑧)) → s(q(𝑥, s(𝑧), s(𝑧)))
q(s(𝑥), s(𝑦), 𝑧) → q(𝑥,𝑦, 𝑧) q(0, s(𝑦), s(𝑧)) → 0

A TRS R induces a rewrite relation →R ⊆ T × T on terms where

𝑠 →R 𝑡 holds if there is a position 𝜋 ∈ Pos(𝑠), a rule ℓ → 𝑟 ∈ R,
and a substitution 𝜎 such that 𝑠 |𝜋 = ℓ𝜎 and 𝑡 = 𝑠 [𝑟𝜎]𝜋 . Let NFR
denote the set of all terms that are in normal form w.r.t.→R .

Such a rewrite step 𝑠 →R 𝑡 is an innermost rewrite step (denoted
𝑠 i→R 𝑡 ) if ℓ𝜎 ∈ ANFR , where ANFR is the set of all terms in argument
normal form w.r.t. →R , i.e., 𝑡 ∈ ANFR iff 𝑡 ′ ∈ NFR for all proper

subterms 𝑡 ′ ⊳ 𝑡 . The TRS Rq computes ⌊ 𝑛
𝑚
⌋ when starting with the

term start(s𝑛 (0), s𝑚 (0)), where s𝑛 (. . .) denotes 𝑛 ∈ N successive

s-function symbols. For example, we have ⌊ 1
1
⌋ = 1 and

start(s(0), s(0)) i→Rq q(s(0), s(0), s(0)) i→Rq q(0, 0, s(0))
i→Rq s(q(0, s(0), s(0))) i→Rq s(0).

Already for non-probabilistic TRSs, the techniques for termina-

tion and complexity analysis of innermost rewriting are significantly
stronger than the ones for “full” rewriting where arbitrary rewrite

sequences are allowed (the same holds for the probabilistic DP

framework for AST in [32, 36, 37]). Moreover, innermost evaluation

is the standard strategy for most programming languages. Hence,

in the remainder, we restrict ourselves to innermost rewriting.

The derivation height [28] of a term 𝑡 is the length of the longest

i→R-sequence starting with 𝑡 , i.e.,

dhR (𝑡) = sup{𝑛 ∈ N | ∃𝑡 ′ ∈ T such that 𝑡 i→𝑛
R 𝑡 ′} ∈ N ∪ {𝜔}.

For example, dhRq (start(s(0), s(0))) = 4. We have dhR (𝑡) = 0 iff

𝑡 ∈ NFR and dhR (𝑡) = 𝜔 iff 𝑡 starts an infinite sequence of
i→R-

steps, as we restricted ourselves to finite TRSs.

We decompose the signature Σ = DR ⊎ CR into defined symbols
DR = {root(ℓ) | ℓ→𝑟 ∈ R} and constructors CR . If R is clear from

the context, we just write C and D. A term 𝑓 (𝑡1, . . . , 𝑡𝑘 ) is basic
if 𝑓 ∈ DR and 𝑡1, . . . , 𝑡𝑘 ∈ T (CR ,V), i.e., 𝑡1, . . . , 𝑡𝑘 do not contain

defined symbols. Thus, basic terms represent an algorithm 𝑓 that is

applied to data 𝑡1, ..., 𝑡𝑘 . So for Rq, q(0, 𝑥, 𝑥) is basic, but q(q(0, 𝑥, 𝑥),
𝑥, 𝑥) is not. Let TBR denote the set of basic terms for the TRS R.

The runtime complexity rcR is a function that maps any 𝑛 ∈ N
to the maximum derivation height for basic terms of size ≤ 𝑛.

Definition 2.1 (Runtime Complexity, rcR [27]). For a TRS R, its
runtime complexity function rcR : N → N ∪ {𝜔} is:

rcR (𝑛) = sup{dhR (𝑡) | 𝑡 ∈ TBR , |𝑡 | ≤ 𝑛}

Given a TRS R, the goal is to determine an upper bound on the

asymptotic complexity of the function rcR .
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Definition 2.2 (Asymptotic Complexities). We consider a set of

complexities ℭ = {Pol0, Pol1, Pol2, . . . , Exp, 2-Exp, Fin, 𝜔} with the

order Pol0 ⊏ Pol1 ⊏ Pol2 ⊏ . . . ⊏ Exp ⊏ 2-Exp ⊏ Fin ⊏ 𝜔 , where

⊑ is the reflexive closure of ⊏. For any function 𝑓 : N → N ∪ {𝜔},
we define its complexity 𝜄 (𝑓 ) ∈ ℭ as follows:

𝜄 (𝑓 ) =



Pol𝑎 if 𝑎 ∈N is the smallest number with 𝑓 (𝑛) ∈O(𝑛𝑎)
Exp if no such 𝑎 exists, but there is a

polynomial pol(𝑛) such that 𝑓 (𝑛) ∈ O(2pol(𝑛) )
2-Exp if no such polynomial exists, but there is a

polynomial pol(𝑛) such that 𝑓 (𝑛) ∈ O(22pol(𝑛) )
Fin if no such polynomial exists,

but there is no 𝑛 ∈ N with 𝑓 (𝑛) = 𝜔

𝜔 if there is an 𝑛 ∈ N with 𝑓 (𝑛) = 𝜔

For any TRS R, we define its runtime complexity 𝜄R as 𝜄 (rcR).

The TRS Rq has linear runtime complexity, i.e., 𝜄Rq = 𝜄 (rcRq ) =
Pol1. For example, any rewrite sequence starting with start(s𝑛 (0),
s𝑚 (0)) has at most 2𝑛 + 2 rewrite steps.

Finally, we recapitulate a basic approach to prove termination

and to infer upper bounds on the runtime complexity via polyno-

mial
1
interpretations. A polynomial interpretation is a Σ-Algebra

I : Σ → N[V] that maps every function symbol 𝑓 ∈ Σ𝑘 to a

polynomial I𝑓 over 𝑘 variables with natural coefficients. As usual,

I is homomorphically extended to terms. I is monotonic if 𝑥 > 𝑦

implies I𝑓 (. . . , 𝑥, . . .) > I𝑓 (. . . , 𝑦, . . .) for all 𝑓 ∈ Σ and 𝑥,𝑦 ∈ N.
We call I a complexity polynomial interpretation (CPI) if for all

constructors 𝑓 ∈ C we have I𝑓 (𝑥1, . . . , 𝑥𝑘 ) = 𝑎1𝑥1 + . . . + 𝑎𝑘𝑥𝑘 + 𝑏,

where 𝑏 ∈ N and 𝑎𝑖 ∈ {0, 1}.2 While arbitrary monotonic polyno-

mial interpretations can be used to prove termination of TRSs [44],

monotonic CPIs are needed to infer a polynomial runtime bound

from such a termination proof [12, 28].

More precisely, if there is a monotonic polynomial interpretation

I such that I(ℓ) > I(𝑟 ) holds for every rule ℓ → 𝑟 ∈ R, then R is

terminating and 𝜄R ⊑ 2-Exp. If all constructors are interpreted by

linear polynomials, then we have 𝜄R ⊑ Exp.

But if I is a monotonic CPI, we even have 𝜄R ⊑ Pol𝑎 if for all 𝑓 ∈
D, the polynomial I𝑓 has at most degree 𝑎. The reason is that this

implies I(𝑡) ∈ O(|𝑡 |𝑎) for all basic ground terms 𝑡 ∈ TBR . (More

precisely, the function that maps any 𝑛 ∈ N to sup{I(𝑡) | 𝑡 ∈ TBR ,
V(𝑡) = ∅, |𝑡 | ≤ 𝑛} is in O(𝑛𝑎).) Since every rewrite step decreases

the interpretation of the term by at least 1, the length of each rewrite

sequence starting with a basic ground term of size ≤ 𝑛 is in O(𝑛𝑎).
This direct approach is only feasible for simple examples like the

TRS Rplus = {plus(0, 𝑦) → 𝑦, plus(s(𝑥), 𝑦) → s(plus(𝑥,𝑦))}, com-

puting the addition of two natural numbers. Let I be a monotonic

CPI with I0 = 0, Is (𝑥) = 𝑥 + 1, and Iplus (𝑥,𝑦) = 2𝑥 + 𝑦 + 1. We

have I(plus(s(𝑥), 𝑦)) = 2𝑥 +𝑦 + 3 > 2𝑥 +𝑦 + 2 = I(s(plus(𝑥,𝑦))),
and I(plus(0, 𝑦)) = 𝑦 + 1 > 𝑦 = I(𝑦). Thus, Rplus is terminating

and has at most linear runtime complexity, i.e., 𝜄Rplus ⊑ Pol1 (in

fact, we have 𝜄Rplus = Pol1). To automate this approach, one can

use SMT solvers to search for a suitable CPI I. However, such a

1
In this paper, we focus on polynomial interpretations with natural coefficients for

simplicity, but our results can be extended to other interpretations where one can

define an addition and expected value operation E( ·) , e.g., matrix interpretations [17].

2
For monotonic CPIs one must have 𝑎𝑖 = 1, but in Sect. 4.3 we will consider weakly

monotonic CPIs, where 𝑎𝑖 ∈ {0, 1} is possible.

1 geo(0)

1/2 geo(s(0) ) 1/2 0

NFRgeo
1/4 geo(s(s(0) ) )

1/4 s(0)
NFRgeo

Figure 1: Rgeo-Rewrite sequence tree starting with geo(0)

direct application of polynomials fails to prove termination or to

infer a polynomial upper bound on 𝜄Rq . In contrast, 𝜄Rq ⊑ Pol1

can be proved by more elaborate techniques like dependency pairs,

see, e.g., [53]. Indeed, we will show how to analyze a probabilistic

version of Rq with our novel DP framework.

2.2 Probabilistic Rewriting
A probabilistic TRS has finite multi-distributions on the right-hand

sides of its rewrite rules. A finitemulti-distribution 𝜇 on a set𝐴 ≠ ∅
is a finite multiset of pairs (𝑝 : 𝑎), where 0 < 𝑝 ≤ 1 is a probability

and 𝑎 ∈ 𝐴, such that

∑
(𝑝 :𝑎) ∈𝜇 𝑝 = 1. Let FDist(𝐴) denote the set of

all finite multi-distributions on 𝐴. For 𝜇 ∈ FDist(𝐴), its support is
the multiset Supp(𝜇) = {𝑎 | (𝑝 :𝑎) ∈ 𝜇 for some 𝑝}. A probabilistic
rewrite rule ℓ → 𝜇 is a pair (ℓ, 𝜇) ∈ T × FDist(T ) such that ℓ ∉ V
andV(𝑟 ) ⊆ V(ℓ) for every 𝑟 ∈ Supp(𝜇). A probabilistic TRS (PTRS)
is a finite set of probabilistic rewrite rules. Similar to TRSs, a PTRS

R induces a (probabilistic) rewrite relation →R ⊆ T × FDist(T )
where 𝑠 →R {𝑝1 : 𝑡1, . . . , 𝑝𝑘 : 𝑡𝑘 } if there is a position 𝜋 ∈ Pos(𝑠),
a rule ℓ → {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 } ∈ R, and a substitution 𝜎 such that

𝑠 |𝜋 = ℓ𝜎 and 𝑡 𝑗 = 𝑠 [𝑟 𝑗𝜎]𝜋 for all 1 ≤ 𝑗 ≤ 𝑘 . We call 𝑠 →R 𝜇 an

innermost rewrite step (denoted 𝑠 i→R 𝜇) if ℓ𝜎 ∈ ANFR . Consider the
PTRS Rgeo with the only rule geo(𝑥) → {1/2 : geo(s(𝑥)), 1/2 : 𝑥}.
When starting with the term geo(0), it computes the representation

s𝑘 (0) of the number 𝑘 ∈ N with a probability of (1/2)𝑘+1, i.e., a
geometric distribution.

To track innermost rewrite sequences with their probabilities, we

consider rewrite sequence trees (RSTs) [36]. The nodes 𝑣 of an R-RST

are labeled by pairs (𝑝𝑣 : 𝑡𝑣) of a probability 𝑝𝑣 ∈ (0, 1] and a term

𝑡𝑣 , where the root always has the probability 1. For each node 𝑣 with

successors 𝑤1, . . . ,𝑤𝑘 , the edge relation represents an innermost

rewrite step, i.e., 𝑡𝑣
i→R { 𝑝𝑤1

𝑝𝑣
: 𝑡𝑤1

, . . . ,
𝑝𝑤𝑘

𝑝𝑣
: 𝑡𝑤𝑘

}. For an R-RST
𝔗, 𝑉𝔗

denotes its set of nodes, root(𝔗) is the term at its root, and

Leaf
𝔗
denotes its set of leaves. An RST for Rgeo is shown in Fig. 1.

A PTRS R is almost-surely terminating (AST) if
∑

𝑣∈Leaf𝔗 𝑝𝑣 = 1

holds for all R-RSTs 𝔗, i.e., if the probability of termination is

always 1. This notion of AST for PTRSs is equivalent to the ones in

[7, 14, 32] where AST is defined via a lifting of
i→R to multisets or

via stochastic processes. However, AST is not sufficient to guarantee

that the expected runtime complexity of a PTRS is finite. To define

this concept formally, we first introduce the expected derivation
length of an R-RST 𝔗 as

edl(𝔗) =∑
𝑣∈𝑉𝔗\Leaf𝔗 𝑝𝑣 .

So edl(𝔗) adds up the probabilities of all rewrite steps in 𝔗. Thus,

for the RST 𝔗 in Fig. 1 we obtain edl(𝔗) = 1 + 1/2 = 3/2, i.e., in
expectation we perform 3/2 rewrite steps in 𝔗. Then a PTRS R is

positively almost-surely terminating (PAST) if edl(𝔗) is finite for all
R-RSTs 𝔗. Again, this notion of PAST for PTRSs is equivalent to the
ones in [7, 14]. Clearly, PAST implies AST, but not vice versa (e.g., a

3
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PTRS with the rule g → {1/2 : c(g, g), 1/2 : 0} which represents a

symmetric random walk is AST, but not PAST).
To adapt the notions for complexity from TRSs to PTRSs, recall

that in the non-probabilistic setting, the derivation height of a term
𝑡 does not consider a fixed rewrite sequence, but all possible rewrite

sequences starting with 𝑡 and takes the supremum of their lengths.

Similarly, while edl considers a fixed RST 𝔗, for the expected deriva-
tion height of a term 𝑡 , we consider all possible RSTs with root 𝑡

and take the supremum of their expected derivation lengths. So the

expected derivation height of a term 𝑡 is

edhR (𝑡) = sup{edl(𝔗) | 𝔗 is an R-RST with root(𝔗) = 𝑡}.
Now we can adapt the notion of runtime complexity to PTRSs.

Definition 2.3 (Expected Runtime Complexity, ercR ). For a PTRS
R, its expected runtime complexity function ercR : N → N ∪ {𝜔} is:

ercR (𝑛) = sup{edhR (𝑡) | 𝑡 ∈ TBR , |𝑡 | ≤ 𝑛}
Moreover, we define R’s runtime complexity 𝜄R as 𝜄 (ercR).

A PTRSR is strongly or bounded almost-surely terminating (SAST)
if edhR (𝑡) is finite for every term 𝑡 . So in contrast to PAST, here
one requires a finite bound on the expected derivation lengths of

all RSTs with the same term at the root. Such notions of SAST were

defined in, e.g., [7, 19, 47]. SAST implies PAST, but not vice versa (a
PTRS with finitely many rules that is PAST but not SAST is given in

[35]). However, as also shown in [35], SAST and PAST are “almost

always” equivalent for finite PTRSs (e.g., whenever the signature

contains a function symbol of arity ≥ 2).

As mentioned, in this paper we restrict ourselves to innermost

reductions that start with basic terms. So we regard a PTRS R to be

SAST if edhR (𝑡) is finite for all basic terms 𝑡 , or equivalently, ercR (𝑛)
≠ 𝜔 for all 𝑛 ∈ N. Thus, we use the following definition of SAST.

Definition 2.4 (Strong Almost-Sure Termination, SAST). A PTRS

R is called strongly almost-surely terminating (SAST) if 𝜄 (R) ⊑ Fin.

Example 2.5 (Leading Examples). Consider the following PTRS
R1, which is based on the previously defined systems Rq and Rgeo.

start(𝑥, 𝑦) → {1 : q(geo(𝑥 ), 𝑦, 𝑦) }
geo(𝑥 ) → {1/2 : geo(s(𝑥 ) ), 1/2 : 𝑥 }

q(s(𝑥 ), s(𝑦), 𝑧 ) → {1 : q(𝑥, 𝑦, 𝑧 ) }
q(𝑥, 0, s(𝑧 ) ) → {1 : s(q(𝑥, s(𝑧 ), s(𝑧 ) ) ) }

q(0, s(𝑦), s(𝑧 ) ) → {1 : 0}

When starting with start(s𝑛 (0), s𝑚 (0)), R1 computes ⌊ 𝑛+geo(0)
𝑚

⌋,
i.e., it first increases 𝑛 according to a geometric distribution, and

then computes the quotient like Rq. Thus, 𝜄 (R1) = Pol1, since Rq

has linear runtime complexity and the geometric distribution only

increases 𝑛 by 2 in expectation. So in particular, R1 is SAST.
Moreover, consider the PTRS R2 with the rules:

start → {1 : f (geo(0) ) }
geo(𝑥 ) → {1/2 : geo(s(𝑥 ) ), 1/2 : 𝑥 }
f (s(𝑥 ) ) → {1 : f (c(𝑥, 𝑥 ) ) }

f (c(𝑥, 𝑦) ) → {1 : c(f (𝑥 ), f (𝑦) ) }

The two f-rules have exponential runtime complexity, as a reduc-

tion starting in f(s𝑛 (0)) creates a full binary tree of height 𝑛 and vis-

its every inner node once. When beginning with the term start, R2

first generates the term f (s𝑘 (0)) with probability (1/2)𝑘+1 and then

takes at least 2
𝑘
steps to terminate. The expected derivation length

of the corresponding RST is at least

∑∞
𝑘=0

(1/2)𝑘+1 ·2𝑘 =
∑∞

𝑘=0
1/2 = 𝜔 .

Hence, 𝜄 (R2) = 𝜔 , i.e., R2 is not SAST.

3 Annotated Dependency Pairs
In Sect. 3.1 we define annotated dependency pairs. While such depen-

dency pairs were used to prove AST in [36] and relative termination

of TRSs in [33], we now develop a new criterion in order to use

them for complexity analysis of PTRSs. Afterwards, in Sect. 3.2

we introduce the general idea of our novel framework in order to

derive upper bounds on the expected runtime complexity of PTRSs.

3.1 ADP Problems
The core idea of the dependency pair framework for termination

of TRSs [3, 21] is the following: A function is terminating iff the
arguments of each recursive function call are decreasing w.r.t. some
well-founded ordering. Hence, for every defined symbol 𝑓 ∈ D one

introduces a fresh tuple or annotated symbol 𝑓 ♯ that is used to com-

pare the arguments of two successive calls of 𝑓 . Let Σ♯ = Σ ∪ D♯

with D♯ = {𝑓 ♯ | 𝑓 ∈ D}, and for any Σ′ ⊆ Σ ∪ V , let PosΣ′ (𝑡)
be all positions of 𝑡 with symbols or variables from Σ′

. For any

𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑘 ) ∈ T with 𝑓 ∈ D, let 𝑡♯ = 𝑓 ♯ (𝑡1, . . . , 𝑡𝑘 ). For termi-

nation analysis, one considers each function call in a right-hand

side of a rewrite rule on its own, i.e., for each rule ℓ → 𝑟 with

PosD = {𝜋1, . . . , 𝜋𝑛}, one obtains 𝑛 dependency pairs ℓ♯ → 𝑟 |♯𝜋𝑖 for
all 1 ≤ 𝑖 ≤ 𝑛. However, for complexity analysis, one has to consider

all function calls in a right-hand side simultaneously. Thus, when

adapting DPs for complexity analysis in [53], a single dependency
tuple (DT) ℓ♯ → [𝑟 |♯𝜋1 , . . . , 𝑟 |

♯
𝜋𝑛 ] is constructed instead of the 𝑛 de-

pendency pairs. By analyzing the dependency tuples (together with

the original rewrite rules), [53] presented a modular DT framework
that can be used to infer an upper bound on the runtime complexity.

However, in contrast to the chain criterion of dependency pairs

(which states that termination of a TRS is equivalent to the absence

of infinite chains of DPs), the chain criterion of this dependency

tuple framework yields an over-approximation. More precisely, the

upper bounds on the runtime complexity obtained via dependency

tuples are only tight for confluent TRSs.
Recently, we introduced annotated dependency pairs (ADPs) to

analyze almost-sure termination of PTRSs [36].We now show that by

using ADPs instead of dependency tuples, the corresponding chain

criterion for (expected) complexity becomes an equivalence again,

i.e., it can be used to compute tight complexity bounds (irrespective

of confluence). Instead of extracting the function calls of right-hand

sides and coupling them together in a fresh dependency tuple, in

ADPs we annotate these function calls in the original rewrite rule

directly, i.e., we keep its original structure.

Definition 3.1 (Annotations). For 𝑡 ∈ T ♯ = T (Σ♯,V) and a set

of positions Φ ⊆ PosD∪D♯ (𝑡), let ♯Φ (𝑡) be the variant of 𝑡 where
the symbols at positions from Φ in 𝑡 are annotated and all other

annotations are removed. So PosD♯ (♯Φ (𝑡)) = Φ and ♯∅ (𝑡) removes

all annotations from 𝑡 . We often write ♯D (𝑡) instead of ♯PosD (𝑡 ) (𝑡)
to annotate all defined symbols in 𝑡 , and ♭(𝑡) instead of ♯∅ (𝑡), where
we extend ♭ to multi-distributions, rules, and sets of rules by re-

moving the annotations of all occurring terms. Moreover, ♭
↑
𝜋 (𝑡)

results from removing all annotations from 𝑡 that are strictly above

4
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the position 𝜋 . We write 𝑡 ⊴𝜋
♯
𝑠 if 𝜋 ∈ PosD♯ (𝑠) and 𝑡 = ♭(𝑠 |𝜋 ),

i.e., 𝑡 results from a subterm of 𝑠 with annotated root symbol by

removing its annotation. If 𝜋 is not of interest, we just write 𝑡 ⊴♯ 𝑠 .

We often write F instead of f♯ for f ∈ D (e.g., Geo instead of geo♯).

Example 3.2 (Annotations). If f ∈D, then we have ♯{1} (f (f (𝑥)))=
♯{1} (F(F(𝑥))) = f (F(𝑥)), ♯D (f (f (𝑥))) = ♯{𝜀,1} (f (f (𝑥))) = F(F(𝑥)),
♭(F(F(𝑥))) = f (f (𝑥)), ♭↑

1
(F(F(𝑥))) = f (F(𝑥)), and f(𝑥) ⊴♯ f (F(𝑥)).

The annotations indicate which function calls need to be re-

garded for complexity analysis. To transform a PTRS into ADPs,

initially we annotate all defined symbols in the right-hand sides of

rules, since all function calls need to be considered at the start of

our analysis. The left-hand side of an ADP is just the left-hand side

of the original rule (i.e., in contrast to the DPs of [3, 21], we do not

annotate symbols in left-hand sides). The DP and the DT framework

work on pairs ⟨P,R⟩, where R contains the original rewrite rules

and P is the set of dependency pairs or tuples. In contrast, ADPs

already represent the original rewrite rules themselves. We simply

add a Boolean flag𝑚 ∈ {true, false} to indicate whether we still

need to consider the corresponding original rewrite rule for our

analysis. Initially, the flag is true for all ADPs.

Definition 3.3 (Annotated Dependency Pairs). An annotated depen-
dency pair (ADP) has the form ℓ → {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 , where
ℓ ∈ T with ℓ ∉ V ,𝑚 ∈ {true, false}, and for all 1 ≤ 𝑗 ≤ 𝑘 we have

𝑟 𝑗 ∈ T ♯
withV(𝑟 𝑗 ) ⊆ V(ℓ).

The canonical ADP of a probabilistic rule ℓ → 𝜇 = {𝑝1 : 𝑟1, . . . , 𝑝𝑘 :
𝑟𝑘 } is A(ℓ → 𝜇) = ℓ → {𝑝1 : ♯D (𝑟1), . . . , 𝑝𝑘 : ♯D (𝑟𝑘 )}true. The ca-
nonical ADPs of a PTRS R are A(R) = {A(ℓ → 𝜇) | ℓ → 𝜇 ∈ R}.

For a set of ADPswe can define the defined symbols, constructors,

and basic terms as for a TRS, because the left-hand sides of the ADPs

are the left-hand sides of the original rewrite rules.

Example 3.4 (Canonical Annotated Dependency Pairs). The canon-
ical ADPs A(R1) and A(R2) of R1 and R2 from Ex. 2.5 are:

A(R1 ) : start(𝑥, 𝑦) → {1 : Q (Geo(𝑥 ), 𝑦, 𝑦) }true (1)

geo(𝑥 ) → {1/2 : Geo(s(𝑥 ) ), 1/2 : 𝑥 }true (2)

q(s(𝑥 ), s(𝑦), 𝑧 ) → {1 : Q (𝑥, 𝑦, 𝑧 ) }true (3)

q(𝑥, 0, s(𝑧 ) ) → {1 : s(Q (𝑥, s(𝑧 ), s(𝑧 ) ) ) }true (4)

q(0, s(𝑦), s(𝑧 ) ) → {1 : 0}true (5)

A(R2 ) : start → {1 : F(Geo(0) ) }true

geo(𝑥 ) → {1/2 : Geo(s(𝑥 ) ), 1/2 : 𝑥 }true

f (s(𝑥 ) ) → {1 : F(c(𝑥, 𝑥 ) ) }true (6)

f (c(𝑥, 𝑦) ) → {1 : c(F(𝑥 ), F(𝑦) ) }true

Since the original rule and all corresponding dependency pairs

are encoded in a single ADP, when rewriting with ADPs we have

to distinguish whether we mean to rewrite with the original rule

or with a dependency pair. This is important as our analysis should

only focus on the complexity of rewriting at annotated positions,

i.e., of those function calls that we still need to analyze.

Definition 3.5 ( i
↩−→P ). Let P be a finite set of ADPs. A term 𝑠 ∈ T ♯

rewrites with P to 𝜇 = {𝑝1 : 𝑡1, . . . , 𝑝𝑘 : 𝑡𝑘 } (denoted 𝑠
i
↩−→P 𝜇) if

there is a position 𝜋 ∈ PosD∪D♯ (𝑠), a rule ℓ → {𝑝1 : 𝑟1, . . . , 𝑝𝑘 :

𝑟𝑘 }𝑚 ∈ P, and a substitution 𝜎 such that ♭(𝑠 |𝜋 ) = ℓ𝜎 ∈ ANFP
(i.e., all proper subterms are in normal form w.r.t.

i
↩−→P ), and for all

1 ≤ 𝑗 ≤ 𝑘 , 𝑡 𝑗 is defined as follows, depending on the flag𝑚 and on

whether 𝜋 ∈ PosD♯ (𝑠) holds:

𝜋 ∈ PosD♯ (𝑠) 𝜋 ∉ PosD♯ (𝑠)
𝑚 = true 𝑡 𝑗 = 𝑠 [𝑟 𝑗𝜎]𝜋 (at) 𝑡 𝑗 = 𝑠 [♭(𝑟 𝑗 )𝜎]𝜋 (nt)
𝑚 = false 𝑡 𝑗 = ♭

↑
𝜋 (𝑠 [𝑟 𝑗𝜎]𝜋 ) (af) 𝑡 𝑗 = ♭

↑
𝜋 (𝑠 [♭(𝑟 𝑗 )𝜎]𝜋 ) (nf)

Rewriting with P is like ordinary probabilistic term rewriting

while considering and modifying annotations. We distinguish be-

tween a-steps (annotation) and n-steps (no annotation). Similar

to the DP and the DT framework for non-probabilistic TRSs, for

complexity we only “count” a-steps (on positions with annotated
symbols) that apply dependency pairs, and between two a-steps
there can be several n-steps where rules are applied below the

position of the next a-step (which evaluate the arguments of the

function call to normal forms). The flag𝑚 ∈ {true, false} indicates
whether the ADP may be used for such n-steps on the arguments

before an a-step on an annotated symbol above.

During an (at)-step (for annotation and true), all annotations
are kept except those in subterms that correspond to variables in

the applied rule. Those subterms are normal forms as we consider

innermost rewriting. An (at)-step at a position 𝜋 represents an a-
step as it rewrites at the position of an annotation, but in addition,

it can also represent an n-step if an annotated symbol is later

rewritten at a position above 𝜋 . An example for an (at)-step is:

F(s(F(s(0)))) i
↩−→A(R2 ) {1 : F(s(F(c(0, 0))))}

using ADP (6). Here, we have 𝜋 = 1.1, ♭(𝑠 |1.1) = f (s(0)) = ℓ𝜎 ,

where 𝜎 instantiates 𝑥 with the normal form 0, and 𝑟1 = F(c(0, 0)).
A step of the form (nt) (for no annotation and true) performs

a rewrite step at the position of a non-annotated defined symbol.

This represents only an n-step, and thus all annotations on the

right-hand side 𝑟 𝑗 are removed. An example for such a step is:

F(s(f (s(0)))) i
↩−→A(R2 ) {1 : F(s(f (c(0, 0))))}

using ADP (6). Here, we have the same 𝜋 , ℓ𝜎 , and 𝜎 as above, but

use the right-hand side ♭(𝑟1) = f (c(0, 0)) without annotations.
An (af)-step (for annotation and false) at a position 𝜋 only rep-

resents an a-step, but not an n-step to rewrite the arguments of

a function that is evaluated later on an annotated position above.

Therefore, we remove all annotations above 𝜋 , as no a-step is al-

lowed to occur above 𝜋 afterwards. If A(R2)′ contains f (s(𝑥)) →
{1 : F(c(𝑥, 𝑥))}false, then a step of the form (af) would be:

F(s(F(s(0)))) i
↩−→A(R2 )′ {1 : f (s(F(c(0, 0))))}

Finally, a step of the form (nf) (for no annotation and false) is
irrelevant for proving an upper bound on the expected runtime

complexity since there can never be another a-step at a position

above. These steps are only included to ensure that the innermost

evaluation strategy is not affected if one modifies the annotations

or the flag of ADPs (such modifications will be done by our ADP

processors in Sect. 4). An example would be

F(s(f (s(0)))) i
↩−→A(R2 )′ {1 : f (s(f (c(0, 0))))}

with f (s(𝑥)) → {1 : F(c(𝑥, 𝑥))}false at Position 1.1 again.

Next, we lift RSTs to so-called chain trees that consider rewriting
with

i
↩−→P instead of

i→R .
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1 Geo(0)

1/2 Geo(s(0) ) 1/2 0

NFA(Rgeo )1/4 Geo(s(s(0) ) ) 1/4 s(0)
NFA(Rgeo )

Figure 2: A(Rgeo)-Chain tree starting with Geo(0)

Definition 3.6 (Chain Tree). Let 𝔗 = (𝑉 , 𝐸, 𝐿) be a (possibly

infinite) labeled and directed tree with nodes 𝑉 ≠ ∅ and edges

𝐸 ⊆ 𝑉 ×𝑉 , where 𝑣𝐸 = {𝑤 | (𝑣,𝑤) ∈ 𝐸} is finite for every 𝑣 ∈ 𝑉 .

We say that 𝔗 is a P-chain tree (P-CT) if

• 𝐿 : 𝑉 → (0, 1] × T ♯
labels every node 𝑣 by a probability 𝑝𝑣

and a term 𝑡𝑣 . For the root 𝑣 ∈ 𝑉 of the tree, we have 𝑝𝑣 = 1.

• If 𝑣𝐸={𝑤1, . . . ,𝑤𝑘 }, then 𝑡𝑣
i
↩−→P { 𝑝𝑤1

𝑝𝑣
: 𝑡𝑤1

, . . . ,
𝑝𝑤𝑘

𝑝𝑣
: 𝑡𝑤𝑘

}.
For every inner node 𝑣 , let P(𝑣) ∈ P × {(at), (af), (nt), (nf)} be the
ADP and the kind of step used for rewriting 𝑡𝑣 .

The A(Rgeo)-CT in Fig. 2 corresponds to the Rgeo-RST in Fig. 1.

In contrast to the expected derivation length of RSTs, for the ex-

pected derivation length of CTs, we only consider (at)- or (af)-steps,
i.e., steps at the position of an annotated symbol.

3
Moreover, some-

times we do not want to count the application of all ADPs, but only
the ADPs from some subset. Thus, similar to the adaption of DPs for

complexity analysis in [53], in our ADP framework we do not con-

sider a single set of ADPs P, but we use a second setS ⊆ P of those

ADPs that (still) have to be taken into account. So one only has to

add the probabilities of a-steps with ADPs from S in the chain tree

to determine its expected derivation length. Thus, our ADP frame-

work uses ADP problems ⟨P,S⟩ where S ⊆ P, and our analysis

ends once we have S = ∅. Such ADP problems are called solved. In
the remainder, we fix an arbitrary ADP problem ⟨P,S⟩.

Definition 3.7 (Exp. Derivation Length for Chain Trees, edl⟨P,S⟩).
Let 𝔗 = (𝑉 , 𝐸, 𝐿) be a P-chain tree. The expected derivation length
of 𝔗, where we only count steps with S at annotated symbols, is

edl⟨P,S⟩ (𝔗) =∑
𝑣∈𝑉 \Leaf𝔗 , P(𝑣) ∈S×{(at),(af)} 𝑝𝑣

Example 3.8 (Expected Derivation Length for Chain Trees). Recon-
sider the PTRS R1 and the following A(R1)-chain tree 𝔗.

1 Start(s𝑛 (0), s𝑚 (0) )

1 Q (Geo(s𝑛 (0) ), s𝑚 (0), s𝑚 (0) )

. . . . . . . . .

1/2 Q (s𝑛 (0), s𝑚 (0), s𝑚 (0) ) (1/2)𝑘+1 Q (s𝑛+𝑘 (0), s𝑚 (0), s𝑚 (0) )

. . . . . .

LetSgeo = {(2)} contain only the geo-ADP and letSq = {(3), (4), (5)}
contain the q-ADPs. Computing the expected derivation length of

𝔗 w.r.t. Sgeo or w.r.t. all ADPs results in

edl⟨A(R1 ),Sgeo ⟩ (𝔗) = 1 + 1

2
+ 1

4
+ 1

8
+ . . . = 1 +∑∞

𝑘=1
1

2
𝑘 = 2

3
Since (nt)- and (nf)-steps are disregarded for the expected derivation length of CTs,

in contrast to the chain trees used for proving AST in [36], we do not have to require

that every infinite path contains infinitely many (at)- or (af)-steps.

edl⟨A(R1 ),A(R1 ) ⟩ (𝔗) = 1 + edl⟨A(R
1
),Sgeo⟩ (𝔗) + edl⟨A(R

1
),Sq⟩ (𝔗)

≤ 1 + 2 +∑∞
𝑘=1

(1/2)𝑘+1 · (2(𝑛 + 𝑘) + 2)
= 3 +∑∞

𝑘=1
𝑘/2𝑘 +∑∞

𝑘=1
(1/2)𝑘 · (𝑛 + 1)

= 3 + 2 + 1 · (𝑛 + 1) = 𝑛 + 6

Next, we define expected derivation height via chain trees by

considering all possible CTs with the root 𝑡♯ for a basic term 𝑡 , and

taking the supremum of their expected derivation lengths.

Definition 3.9 (Exp. Derivation Height via Chain Trees, edh⟨P,S⟩).
For 𝑡 ∈ TBP , the expected derivation height edh⟨P,S⟩ (𝑡) ∈ N∪ {𝜔}
is the supremum obtained when adding all probabilities for a-steps
with S in any chain tree 𝔗 with root 𝑡♯:

edh⟨P,S⟩ (𝑡 ) = sup{edl⟨P,S⟩ (𝔗) | 𝔗 is a P-chain tree with root(𝔗) = 𝑡♯ }

Example 3.10 (Expected Derivation Height w.r.t. Chain Trees). Con-
sider the term 𝑡 = start(s𝑛 (0), s𝑚 (0)) and its correspondingA(R1)-
CT from Ex. 3.8. As this is the only A(R1)-CT with root 𝑡♯ , we

obtain edh⟨A(R1 ),A(R1 ) ⟩ (𝑡) ≤ 𝑛 + 6 and edh⟨A(R1 ),Sgeo ⟩ (𝑡) = 2.

Now we can define expected runtime complexity for ADP problems.

Definition 3.11 (Expected Runtime Complexity for ADP Problems,
erc⟨P,S⟩). The expected runtime complexity function of an ADP

problem ⟨P,S⟩ is defined as

erc⟨P,S⟩ (𝑛) = sup{edh⟨P,S⟩ (𝑡) | 𝑡 ∈ TBP , |𝑡 | ≤ 𝑛}

and we define the runtime complexity 𝜄 ⟨P,S⟩ of ⟨P,S⟩ as 𝜄 (erc⟨P,S⟩).

Example 3.12 (Expected Runtime Complexity for ADP Problems).
For a basic term start(𝑡1, 𝑡2), A(R1) first computes a geometric

distribution starting in 𝑡1. This needs 2 steps in expectation, and in-

creases 𝑡1 by only 2 in expectation. In the resulting term q(𝑡geo, 𝑡2, 𝑡2),
where 𝑡geo is the normal form resulting from geo(𝑡1), we decrease
𝑡geo until we reach 0. Therefore, the expected derivation height is

linear in the size of the start term, i.e., 𝜄 ⟨A(R1 ),A(R1 ) ⟩ = Pol1. If we

only consider Sgeo for the complexity, then 𝜄 ⟨A(R1 ),Sgeo ⟩ = Pol0.

With our new concepts, we obtain the following novel chain
criterion for complexity analysis of PTRSs. It shows that to analyze

the expected runtime complexity of a PTRS R, it suffices to analyze

the expected runtime complexity of its canonical ADP problem
⟨A(R),A(R)⟩, i.e., in the beginning all ADPs are considered for

complexity. In the canonical ADP problem, all defined symbols in

right-hand sides are annotated. Thus, one can only perform (at)-
steps, because due to the innermost strategy, annotations are only

removed from subterms in normal form. Hence, the rewrite steps

with R and the ones with A(R) directly correspond to each other.

Theorem 3.13 (Chain Criterion). Let R be a PTRS. Then for all
basic terms 𝑡 ∈ TBR we have

edhR (𝑡) = edh⟨A(R),A(R) ⟩ (𝑡)

and therefore 𝜄R = 𝜄 ⟨A(R),A(R) ⟩ .

In contrast to the chain criterion of [53] for complexity analysis

in the non-probabilistic setting, Thm. 3.13 yields a tight bound
(𝜄R = 𝜄 ⟨A(R),A(R) ⟩ ) for arbitrary PTRSs due to the usage of ADPs

instead of dependency tuples (with dependency tuples one would

only obtain an upper bound, i.e., 𝜄R ≤ 𝜄 ⟨A(R),A(R) ⟩ ).
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⟨P,S⟩Pol1

⟨P1,S1⟩Pol2 ⟨P2,∅⟩ Pol0

⟨P3,∅⟩Pol0

Figure 3: Example of a proof tree

3.2 ADP Framework
Like the original DP framework of [21], our ADP framework is a

divide-and-conquer approach which applies processors to simplify

ADP problems until all subproblems are solved. As in [53], a pro-

cessor also returns a complexity 𝑐 ∈ ℭ.

Definition 3.14 (Processor). An (ADP) processor Proc is a func-

tion Proc(⟨P,S⟩) = (𝑐, {⟨P1,S1⟩, . . . , ⟨P𝑛,S𝑛⟩}) mapping an ADP

problem ⟨P,S⟩ to a complexity 𝑐 ∈ ℭ and a set of ADP problems.

The intuition for Proc is that in addition to the complexities of

⟨P𝑖 ,S𝑖⟩, the complexity 𝑐 is also used to obtain an upper bound

on the complexity of ⟨P,S⟩. During the analysis with our ADP

framework, we construct a proof tree that contains all subproblems

and complexities resulting from the application of processors.

Definition 3.15 (Proof Tree). A proof tree is a labeled, finite tree
(𝑉 , 𝐸, 𝐿A, 𝐿C) with a labeling 𝐿A that maps each node to an ADP

problem and a second labeling 𝐿C that maps each node to a com-

plexity from ℭ. Each edge represents an application of a processor,

i.e., if 𝑣𝐸 = {𝑤1, . . . ,𝑤𝑛}, then Proc(𝐿A (𝑣)) = (𝐿C (𝑣), {𝐿A (𝑤1),
. . . , 𝐿A (𝑤𝑛)}) for some processor Proc, and we require that the

complexity of all leaves 𝑣 is 𝐿C (𝑣) = Pol0 if the corresponding ADP

problem 𝐿A (𝑣) is solved, and 𝐿C (𝑣) = 𝜔 otherwise. We call a proof

tree solved if all ADP problems in its leaves are solved.

Fig. 3 shows an example of a solved proof tree where the com-

plexities given by the labeling 𝐿C are depicted in red. So here, a

processor with Proc(⟨P,S⟩) = (Pol1, {⟨P1,S1⟩, ⟨P2,∅⟩}) was used
for the step from the root to its two children.

To ensure that the maximum of all complexities in a proof tree is

an upper bound on the complexity of the ADP problem at the root,

we require that proof trees arewell formed, i.e., that for every node 𝑣
with 𝐿A (𝑣) = ⟨P,S⟩, the expected complexity of ⟨P,S⟩ is bounded
by the 𝐿C-labels of the subtree starting at 𝑣 and the 𝐿C-labels on the

path from the root to 𝑣 . However, since no processor has been ap-

plied on the leaves of the proof tree (yet), for leaves we use the actual

expected complexity instead of the 𝐿C-label. Moreover, for well-

formed proof trees we require that the ADPs fromP\S have already

been taken into account in the path from the root to 𝑣 . This will

be exploited, e.g., in the knowledge propagation processor of Sect. 4.4.

Definition 3.16 (⊕, Well-Formed Proof Tree). Let ⊕ be the max-

imum operator on complexities, i.e., for 𝑐, 𝑑 ∈ ℭ, let 𝑐 ⊕ 𝑑 = 𝑑 if

𝑐 ⊑ 𝑑 and 𝑐 ⊕ 𝑑 = 𝑐 otherwise (so, e.g., Pol2 ⊕ Pol1 = Pol2).

A proof tree (𝑉 , 𝐸, 𝐿A, 𝐿C) well formed if for every node 𝑣 with

𝐿A (𝑣)=⟨P,S⟩ and path 𝑣1, . . . , 𝑣𝑘 =𝑣 from the root 𝑣1 to 𝑣 , we have

𝜄⟨P,S⟩ ⊑ 𝐿C (𝑣1 ) ⊕ · · · ⊕ 𝐿C (𝑣𝑘−1 ) ⊕ max{𝐿′C (𝑤 ) | (𝑣, 𝑤 ) ∈ 𝐸∗}
𝜄⟨P,P\S⟩ ⊑ 𝐿C (𝑣1 ) ⊕ · · · ⊕ 𝐿C (𝑣𝑘−1 )

Here, 𝐸∗ is the reflexive-transitive closure of the edge relation,

i.e., (𝑣,𝑤) ∈ 𝐸∗ if 𝑣 reaches 𝑤 in the proof tree. Moreover, let

𝐿′C (𝑣) = 𝐿C (𝑣) for inner nodes 𝑣 and 𝐿′C (𝑣) = 𝜄𝐿A (𝑣) for leaves 𝑣 .

The following theorem shows that for well-formed proof trees,

the complexity of the ADP problem at the root is indeed bounded

by the maximum of all complexities at the nodes.

Corollary 3.17 (Complexity Bound fromWell-Formed Proof

Tree). Let 𝔓 = (𝑉 , 𝐸, 𝐿A, 𝐿C) be a well-formed proof tree with
𝐿A (𝑣1) = ⟨P,S⟩ for the root 𝑣1 of𝔓. Then,

𝜄 ⟨P,S⟩ ⊑ max{𝐿C (𝑣) | 𝑣 ∈ 𝑉 }.
Now we can define when a processor is sound.

Definition 3.18 (Soundness of Proc.). A processor Proc(⟨P,S⟩) =
(𝑐, {⟨P1,S1⟩, . . . , ⟨P𝑛,S𝑛⟩}) is sound if for all well-formed proof

trees (𝑉 , 𝐸, 𝐿A, 𝐿C) and all nodes 𝑣 ∈ 𝑉 , we have: If 𝐿A (𝑣) = ⟨P,
S⟩ and 𝑣1, . . . , 𝑣𝑘 = 𝑣 is the path from the root node 𝑣1 to 𝑣 , then

𝜄⟨P,S⟩ ⊑ 𝐿C (𝑣1 ) ⊕ ... ⊕ 𝐿C (𝑣𝑘−1 ) ⊕ 𝑐 ⊕ 𝜄⟨P
1
,S
1
⟩ ⊕ ... ⊕ 𝜄⟨P𝑛 ,S𝑛 ⟩ (7)

𝜄⟨P𝑖 ,P𝑖 \S𝑖 ⟩ ⊑ 𝐿C (𝑣1 ) ⊕ ... ⊕ 𝐿C (𝑣𝑘−1 ) ⊕ 𝑐 for all 1 ≤ 𝑖 ≤ 𝑛 (8)

So (7) requires that the complexity of the considered ADPs S
must be bounded by the maximum of all “previous” complexi-

ties 𝐿C (𝑣1), . . . , 𝐿C (𝑣𝑘−1), the newly derived complexity 𝑐 , and the

complexity of the remaining ADP problems ⟨P1,S1⟩, . . . , ⟨P𝑛,S𝑛⟩.
Moreover, (8) ensures that in the remaining ADP problems ⟨P𝑖 ,S𝑖⟩,
the complexity of the “non-considered” ADPs P𝑖 \S𝑖 is bounded by

the maximum of all previous complexities and the newly derived

complexity 𝑐 . This ensures that well-formedness of proof trees is

preserved when extending them by applying sound processors.

Lemma 3.19 (Sound Processors Preserve Well-Formedness).

Let 𝔓 = (𝑉 , 𝐸, 𝐿A, 𝐿C) be a proof tree with a leaf 𝑣 where 𝐿A (𝑣) is
not solved, and let Proc be a sound processor such that Proc(𝐿A (𝑣)) =
(𝑐, {⟨P1,S1⟩, . . . , ⟨P𝑛,S𝑛⟩}). Let 𝔓′ result from 𝔓 by adding fresh
nodes 𝑤1, . . . ,𝑤𝑛 and edges (𝑣,𝑤1), . . . , (𝑣,𝑤𝑛), where the labeling
is extended such that 𝐿A (𝑤𝑖 ) = ⟨P𝑖 ,S𝑖⟩ for all 1 ≤ 𝑖 ≤ 𝑛 and
𝐿C (𝑣) = 𝑐 . Then𝔓′ is also well formed.

To determine an upper bound on the expected runtime complex-

ity 𝜄R of a PTRS R, our ADP framework starts with the canonical

ADP problem ⟨A(R),A(R)⟩ and applies sound processors repeat-

edly until all problems are solved. Then by Thm. 3.13 and Cor. 3.17,

the runtime complexity 𝜄R is bounded by the maximum of all com-

plexities occurring in the corresponding proof tree.

Corollary 3.20 (Soundness of the ADP Framework for Run-

time Complexity). Let R be a PTRS and 𝔓 = (𝑉 , 𝐸, 𝐿A, 𝐿C) be a
well-formed solved proof tree where 𝐿A (𝑣1) = ⟨A(R),A(R)⟩ for the
root 𝑣1 of𝔓. Then we have

𝜄R ⊑ max{𝐿C (𝑣) | 𝑣 ∈ 𝑉 }.
Remark 3.21. While our framework is inspired by the DT frame-

work of [53] for complexity analysis of non-probabilistic TRSs, our

adaption to PTRSs differs from [53] in several aspects. Apart from

using ADPs instead of dependency tuples (which results in a “tight”

chain criterion instead of an over-approximation), we use proof

trees (instead of just proof chains, which allows us to use processors

that return several subproblems), and we introduced the novel con-

cept of well-formed proof trees and require that sound processors

preserve well-formedness. This will allow us to define a knowledge
propagation processor in Sect. 4.4 which takes the knowledge pro-

vided by well-formed proof trees into account. In contrast to [53],

we obtain such a processor without extending our ADP problems
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by an additional component K that contains those dependency

tuples which were already taken into account in the proof up to

now, since in our setting we would always have K = P \ S.

4 ADP Processors
In this section, we adapt the main processors of the DP and the DT

framework [21, 53] in order to analyze expected runtime complexity

of probabilistic TRSs. Throughout the section, we illustrate our

processors with the PTRS R1 from Ex. 2.5. The resulting solved

proof tree for the initial ADP problem ⟨A(R1),A(R1)⟩ that we
construct during the section is depicted in Fig. 6.

4.1 Usable Rules Processor
We start with a processor that considers the usable rules. Usable
rules over-approximate the set of those rules that can be used

to evaluate the arguments of annotated function symbols if their

variables are instantiated by normal forms (as required in innermost

evaluations). Essentially, the usable rules of a term 𝑡 consist of all

rules for the defined symbols 𝑓 occurring in 𝑡 and all rules that are

usable for the terms in the right-hand sides of 𝑓 -rules.

Definition 4.1 (Usable Rules). For every 𝑓 ∈Σ♯
and set of ADPs P,

let RulesP (𝑓 ) = {ℓ→ 𝜇true ∈P | root(ℓ)= 𝑓 }. Moreover, for every

𝑡 ∈ T ♯
, the usable rules UP (𝑡) of 𝑡 w.r.t. P are defined as:

UP (𝑡 ) =∅, if 𝑡 ∈ V or P = ∅
UP (𝑓 (𝑡1, . . . , 𝑡𝑛 ) ) =RulesP (𝑓 ) ∪⋃

1≤ 𝑗≤𝑛UP′ (𝑡 𝑗 )
∪⋃

ℓ→𝜇true∈RulesP (𝑓 ), 𝑟 ∈Supp(𝜇) UP′ (♭(𝑟 ) )

where P′ = P \ RulesP (𝑓 ). The usable rules of P are

U(P) =⋃
ℓ→𝜇𝑚 ∈P, 𝑟 ∈Supp(𝜇 ), 𝑡⊴♯𝑟

UP (𝑡♯).

Similar to the usable rules processor for AST in [36], our usable

rules processor sets the flag of all non-usable rules in P to false
to indicate that they cannot be used to evaluate arguments of an-

notated functions that are rewritten afterwards. The rules in P’s

subset S are changed analogously (since the purpose of S is only

to indicate which ADPs must still be counted for complexity).

Theorem 4.2 (Usable Rules Pr.).For an ADP problem ⟨P,S⟩, let
P′ = U(P) ∪ {ℓ → 𝜇false | ℓ → 𝜇𝑚 ∈ P \ U(P)},
S′ = (S ∩ U(P)) ∪ {ℓ → 𝜇false | ℓ → 𝜇𝑚 ∈ S \ U(P)}.

Then, ProcUR (⟨P,S⟩) = (Pol0, {⟨P′,S′⟩}) is sound.
Example 4.3 (Usable Rules Processor). Consider the ADP prob-

lem ⟨A(R1),A(R1)⟩ from Ex. 3.4. There is only one term 𝑟 in the

right-hand sides with an annotated subterm 𝑡 ⊴♯ 𝑟 where 𝑡
♯
has a

defined symbol below the annotated root, viz. 𝑡♯ = Q (geo(𝑥), 𝑦,𝑦).
Thus, only the geo-ADP (2) is usable and we can set the flag of

all other ADPs to false. Hence, we get ProcUR (⟨A(R1),A(R1)⟩) =
(Pol0, {⟨P1,P1⟩}) where P1 = {(9) − (13)} with

start(𝑥, 𝑦) → {1 : Q (Geo(𝑥 ), 𝑦, 𝑦) }false (9)

geo(𝑥 ) → {1/2 : Geo(s(𝑥 ) ), 1/2 : 𝑥 }true (10)

q(s(𝑥 ), s(𝑦), 𝑧 ) → {1 : Q (𝑥, 𝑦, 𝑧 ) }false (11)

q(𝑥, 0, s(𝑧 ) ) → {1 : s(Q (𝑥, s(𝑧 ), s(𝑧 ) ) ) }false (12)

q(0, s(𝑦), s(𝑧 ) ) → {1 : 0}false (13)

Fewer rules with the flag true have advantages, e.g., for the depen-
dency graph and the reduction pair processor, see Sect. 4.2 and 4.3.

Example 4.4 (Basic Start Terms). The restriction to basic start

terms is not only required to infer polynomial upper bounds from

CPIs (see Sect. 2.1), but it is also essential for the soundness of the

usable rules processor. To see this, letR3 contain all rules ofR2 from

Ex. 2.5 except start → {1 : f (geo(0))}. If we do not require basic

start terms, then we can start an evaluation with the term f(geo(0)),
i.e., then R3 is not SAST. The canonical ADPs A(R3) are the same

as for R2 in Ex. 3.4 just without the start-ADP. Thus, A(R3) has
no usable rules and ProcUR sets the flag of all ADPs to false. When

starting with a term like F(Geo(0)), then one application of the

geo-ADP now removes the annotations of the F-symbols above it,

as the geo-ADP now has the flag false. So for the resulting ADP

problem, only Geo is annotated in chain trees and thus, they all

have finite expected derivation length. Hence, we would now falsely

infer that R3 is SAST w.r.t. arbitrary start terms.

4.2 Dependency Graph Processor
The dependency graph is a control flow graph that indicates which

function calls can occur after each other. This does not depend

on the probabilities, and we can consider each function call on its

own. Hence, we can use the ordinary dependency graph of the

corresponding (non-probabilistic) dependency pairs. To also detect

the predecessors of ADPs 𝛼 : ℓ → 𝜇 without annotations, we add

a dependency pair ℓ♯ → ⊥ for a fresh symbol ⊥ in that case.

Definition 4.5 (Non-Probabilistic Variant, Dependency Pairs). For
a set of ADPs P, let np(P) = {ℓ → ♭(𝑟 𝑗 ) | ℓ → {𝑝1 : 𝑟1, . . . , 𝑝𝑘 :

𝑟𝑘 }true ∈ P, 1 ≤ 𝑗 ≤ 𝑘} denote its non-probabilistic rule variant.
So np(P) is an ordinary TRS which only considers the ADPs with

the flag true. For any ADP 𝛼 = ℓ → {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 , let
dp(𝛼) = {ℓ♯ → 𝑡♯ | 1 ≤ 𝑗 ≤ 𝑘, 𝑡 ⊴♯ 𝑟 𝑗 }. Moreover, let dp

⊥ (𝛼) =
{ℓ♯ → ⊥} if dp(𝛼) = ∅, and dp

⊥ (𝛼) = dp(𝛼), otherwise. For P,

let dp(P) =⋃
𝛼∈P dp

⊥ (𝛼) denote its non-probabilistic DP variant,
which is a set of dependency pairs as in [3, 21].

So each dependency pair from dp(𝛼) corresponds to a single

annotation on the right-hand side of the ADP 𝛼 . In the dependency

graph, the edges indicate whether one DP can follow another when

the instantiated arguments are evaluated with np(P).

Definition 4.6 (Dependency Graph). The P-dependency graph has

the nodes dp(P) and there is an edge from ℓ
♯

1
→ 𝑡

♯

1
to ℓ

♯

2
→ ... if

there are substitutions 𝜎1, 𝜎2 such that 𝑡
♯

1
𝜎1

i→∗
np(P) ℓ

♯

2
𝜎2 and both

ℓ
♯

1
𝜎1 and ℓ

♯

2
𝜎2 are in argument normal form, i.e., ℓ

♯

1
𝜎1, ℓ

♯

2
𝜎2 ∈ ANFP .

While the dependency graph is not computable in general, sev-

eral techniques have been developed to compute over-approxima-

tions of the graph automatically, e.g., [3, 21, 26].

Example 4.7 (Dependency Graph). We continue with ⟨P1,P1⟩
from Ex. 4.3, where P1 = {(9) − (13)}. We have

dp(P1 ) = { Start(𝑥, 𝑦) → Q (geo(𝑥 ), 𝑦, 𝑦), (14)

Start(𝑥, 𝑦) → Geo(𝑥 ), (15)

Geo(𝑥 ) → Geo(s(𝑥 ) ), (16)

Q (s(𝑥 ), s(𝑦), 𝑧 ) → Q (𝑥, 𝑦, 𝑧 ), (17)

Q (𝑥, 0, s(𝑧 ) ) → Q (𝑥, s(𝑧 ), s(𝑧 ) ), (18)

Q (0, s(𝑦), s(𝑧 ) ) → ⊥ } . (19)

The P1-dependency graph is depicted in Fig. 4.

8



DPs for Expected Innermost Runtime Complexity of Probabilistic Term Rewriting PPDP ’25, September 10–11, 2025, University of Calabria, Rende, Italy

(15) (16)

(14)

(17) (18) (19)

Figure 4: P1-dependency graph

The idea of the dependency graph processor for termination anal-

ysis is to analyze each strongly connected component (SCC)
4
of

the dependency graph separately. However (already in the non-

probabilistic setting, e.g., [53]), this is not possible when analyzing

complexity. There are examples where all SCCs have linear com-

plexity but the full system has quadratic complexity, or where all

individual SCCs are SAST but the full system is not (see Ex. 4.11).

The problem is that when considering an SCC individually, then

we lose the information how often and with which instantiations of

the variables this SCC is “called”. For that reason, we now present a

novel dependency graph processor which regards each SCC together
with its “prefix”, i.e., togetherwith all nodes of the dependency graph
that can reach the SCC. As usual, we say that a node reaches an
SCC if there is a path from the node to the SCC in the dependency

graph (where the path has length ≥ 0, i.e., each node also reaches

itself). However, prefixes which are independent from each other

can be regarded separately, i.e., we only regard SCC-prefixes J
where for all nodes 𝛼, 𝛽 ∈ J , 𝛼 reaches 𝛽 or 𝛽 reaches 𝛼 .

Definition 4.8 (SCC-Prefix). Let P be a set of ADPs. Then J is

an SCC-prefix of the P-dependency graph if there exists an SCC

G ⊆ J where J ⊆ dp(P) is a maximal set such that all DPs of J
reach G and for all 𝛼, 𝛽 ∈ J , 𝛼 reaches 𝛽 or 𝛽 reaches 𝛼 .

For example, the P1-dependency graph of Fig. 4 has two SCCs

{(16)} and {(17), (18)}, and two SCC-prefixes J1 = {(15), (16)} and
J2 = {(14), (17), (18)}. In this example, J1 and J2 represent two

completely independent parts of the dependency graph.

The dependency graph processor now handles each SCC-prefix

J separately. To consider only the effects of the DPs J in the ADPs

of P, we replace every ADP 𝛼 by the variant 𝛼 |J where only those

symbols are annotated that correspond to the DPs from J . For

example, for J1 = {(15), (16)} and the ADP

𝛼 = start(𝑥,𝑦) →{1 : Q (Geo(𝑥), 𝑦,𝑦)}false, (9)

in 𝛼 |J1 we only annotate Geo but not Q in the right-hand side,

due to the DP (15) which results from its subterm Geo(𝑥), i.e.,
𝛼 |J1 = start(𝑥,𝑦) → {1 : q(Geo(𝑥), 𝑦,𝑦)}false.

Theorem 4.9 (Dependency Graph Proc.). Let ⟨P,S⟩ be an ADP
problem and let J be an SCC-prefix of the P-dependency graph. For
any ADP 𝛼 = ℓ → {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 ∈ P let 𝛼 |J = ℓ → {𝑝1 :
♯Φ1 (𝑟1), . . . , 𝑝𝑘 : ♯Φ𝑘 (𝑟𝑘 )}𝑚 where for 1 ≤ 𝑗 ≤ 𝑘 , we have 𝜋 ∈ Φ𝑗

iff there exists an ℓ♯ → 𝑡♯ ∈ J such that 𝑡 ⊴𝜋
♯
𝑟 𝑗 . Similarly, let

P|J = {𝛼 |J | 𝛼 ∈ P} and S|J = {𝛼 |J | 𝛼 ∈ S}.5
Then ProcDG (⟨P,S⟩) = (Pol0, {⟨P|J ,S|J⟩ | J is an SCC-prefix

of the P-dependency graph }) is sound.
4
A set G of ADPs is an SCC if it is a maximal cycle, i.e., a maximal set where for any

𝛼, 𝛼 ′
in G there is a non-empty path from 𝛼 to 𝛼 ′

only traversing nodes from G.

5
Note that if a DP from J could originate from several subterms 𝑟 𝑗 |𝜋 in several ADPs

𝛼 , then we would annotate all their positions in P|J . A slightly more powerful variant

of the processor could be obtained by storing for every DP of J from which subterm

of which ADP it originates, and only annotating this position. We did not do this in

Thm. 4.9 to ease the presentation.

Start → F(geo(0) ) F(s(𝑥 ) ) → F(c(𝑥, 𝑥 ) )

F(c(𝑥, 𝑦) ) → F(𝑥 ) F(c(𝑥, 𝑦) ) → F(𝑦)

Start → Geo(0) Geo(𝑥 ) → Geo(s(𝑥 ) )

Figure 5: A(R2)-dependency graph

Example 4.10 (Dependency Graph Proc.). Due to the two SCC-

prefixes J1 = {(15), (16)} and J2 = {(14), (17), (18)}, the depen-

dency graph processor transforms the ADP problem ⟨P1,P1⟩ from
Ex. 4.3 into ⟨P1 |J1 ,P1 |J1 ⟩ (corresponding to the Geo-SCC-Prefix)
and ⟨P1 |J2 ,P1 |J2 ⟩ (corresponding to the Q-SCC-Prefix) with

P1 |J
1
: start(𝑥, 𝑦) → {1 : q(Geo(𝑥 ), 𝑦, 𝑦) }false (20)

geo(𝑥 ) → {1/2 : Geo(s(𝑥 ) ), 1/2 : 𝑥 }true (21)

q(s(𝑥 ), s(𝑦), 𝑧 ) → {1 : q(𝑥, 𝑦, 𝑧 ) }false (22)

q(𝑥, 0, s(𝑧 ) ) → {1 : s(q(𝑥, s(𝑧 ), s(𝑧 ) ) ) }false (23)

q(0, s(𝑦), s(𝑧 ) ) → {1 : 0}false (24)

P1 |J
2
: start(𝑥, 𝑦) → {1 : Q (geo(𝑥 ), 𝑦, 𝑦) }false (25)

geo(𝑥 ) → {1/2 : geo(s(𝑥 ) ), 1/2 : 𝑥 }true (26)

q(s(𝑥 ), s(𝑦), 𝑧 ) → {1 : Q (𝑥, 𝑦, 𝑧 ) }false (27)

q(𝑥, 0, s(𝑧 ) ) → {1 : s(Q (𝑥, s(𝑧 ), s(𝑧 ) ) ) }false (28)

q(0, s(𝑦), s(𝑧 ) ) → {1 : 0}false (29)

Our novel dependency graph processor subsumes several previ-

ous processors from the literature, like the “leaf removal processor”

of [53]. Leaves of the dependency graph like (19) are not part of any

SCC. Hence, they are never contained in SCC-prefixes and thus,

the annotations that only correspond to such leaves are always

removed. For a similar reason, ProcDG from Thm. 4.9 subsumes the

“rhs simplification processor” of [53] and the related “usable terms

processor” of [36], both of which share the same underlying idea.

Ex. 4.11 shows that only considering SCCs without prefixes

would be unsound for analyzing complexity and proving SAST.

Example 4.11 (Combining Non-Connected SCCs may Increase Com-
plexity). Recall R2 from Ex. 2.5 which is not SAST and A(R2) from
Ex. 3.4. The A(R2)-dependency graph is depicted in Fig. 5. When

only considering the SCCs GGeo (containing the Geo-DP) and GF

(containing the three F-DPs), then we could falsely “prove” SAST
since 𝜄 ⟨A(R2 ) |GGeo ,A(R2 ) |GGeo ⟩ = Pol0 and 𝜄 ⟨A(R2 ) |GF ,A(R2 ) |GF ⟩ =

Exp. The problem is that for the F-SCC GF, one also has to consider

the DP Start → F(geo(0)) which determines with which instantia-

tions of the variables the F-SCC is called (i.e., it ensures that the geo-
rules become usable). Indeed, we have 𝜄 (⟨A(R2),A(R2)⟩) = 𝜔 .

4.3 Reduction Pair Processor
Now we lift the direct application of polynomial interpretations

explained in Sect. 2.1 to an ADP processor for complexity analysis of

PTRSs, which allows us to apply polynomial interpretations I in a

modular way. As in the classical DP approach [3, 21], here it suffices

if I is weakly monotonic, i.e., if 𝑥 ≥ 𝑦 implies I𝑓 (..., 𝑥, ...) ≥ I𝑓 (...,
𝑦, ...) for all 𝑓 ∈ Σ and 𝑥,𝑦 ∈ N. Moreover, as in [7, 36], to ensure

“weak monotonicity” w.r.t. expected values we restrict ourselves to

interpretations with multilinear polynomials, where all monomials

have the form 𝑐 · 𝑥𝑒1
1
· . . . · 𝑥𝑒𝑘

𝑘
with 𝑐 ∈ N and 𝑒1, . . . , 𝑒𝑘 ∈ {0, 1}.

9
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The reduction pair processor imposes three requirements on I:
(1) All rules with the flag truemust be weakly decreasing in expec-

tation when removing all annotations. Due to weak monotonicity,

this ensures that evaluating the arguments of a function call (i.e.,

applying the rule in a context) also decreases weakly in expectation.

(2) All ADPs must be weakly decreasing when comparing the anno-

tated left-hand side I(ℓ♯) with the expected value of the annotated

subterms of the right-hand side {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }. To measure

the value of a term 𝑟 𝑗 , here we consider all its subterms 𝑡 ⊴♯ 𝑟 𝑗
at annotated positions and add the polynomial interpretations of

all such 𝑡♯ , i.e., we consider I♯∑ (𝑟 𝑗 ) =∑
𝑡⊴♯𝑟 𝑗

I(𝑡♯). Regarding this
sum instead of the interpretation I(𝑟 𝑗 ) of the whole term 𝑟 𝑗 is the

reason why only need weak monotonicity.

(3) Finally, the processor removes all strictly decreasing ADPs

from the component S of the ADP problem. However, the ADPs

are still kept in P, because they may still be used in reductions.

Moreover, if I is a CPI, then the processor infers a polynomial

bound corresponding to the degrees of the polynomials used for

annotated symbols. Otherwise, it only infers an exponential bound

(which is still useful when analyzing SAST).

Theorem 4.12 (Reduction Pair Proc.). Let I : Σ♯ → N(V) be
aweaklymonotonic, multilinear polynomial interpretation. Let ⟨P,S⟩
be an ADP problem where P = P≥ ⊎ P> and P> ∩ S ≠ ∅ such that:
(1) For every ℓ→{𝑝1 :𝑟1, . . . , 𝑝𝑘 :𝑟𝑘 }true ∈ P: I(ℓ ) ≥∑

1≤ 𝑗≤𝑘 𝑝 𝑗 · I (♭(𝑟 𝑗 ) )
(2) For every ℓ→{𝑝1 :𝑟1, . . . , 𝑝𝑘 :𝑟𝑘 }𝑚 ∈ P≥ : I(ℓ♯ ) ≥∑

1≤ 𝑗≤𝑘 𝑝 𝑗 · I♯∑ (𝑟 𝑗 )
(3) For every ℓ→{𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 ∈ P> : I(ℓ♯ ) >∑

1≤ 𝑗≤𝑘 𝑝 𝑗 · I♯∑ (𝑟 𝑗 ) ,
where I♯∑ (𝑟 𝑗 ) =

∑
𝑡⊴♯𝑟 𝑗

I(𝑡♯ ) .

Then ProcRP (⟨P,S⟩) = (𝑐, ⟨P,S \ P>⟩) is sound, where the com-
plexity 𝑐 ∈ ℭ is determined as follows: If I is a CPI and for all
annotated symbols 𝑓 ♯ ∈ D♯ , the polynomial 𝐼

𝑓 ♯
has at most degree

𝑎, then 𝑐 = Pol𝑎 . If I is not a CPI, then 𝑐 = Exp if all constructors are
interpreted by linear polynomials, and otherwise 𝑐 = 2-Exp.

In contrast to the reduction pair processor for proving AST from

[36], our processor cannot remove any annotation from P. The

reason is that the ADPs from P> may still be needed to reach all

annotated terms that are relevant for the complexity of P≥ . (This
problem already occurs when analyzing complexity in the non-

probabilistic setting, see, e.g., [53, Ex. 25].) But we can remove

strictly decreasing ADPs from S and, therefore, do not have to

count them anymore for the complexity. The complexity of the

removed ADPs is accounted for by 𝑐 ∈ {Pol𝑎, Exp, 2-Exp}.

Example 4.13 (Reduction Pair Processor). Consider ⟨P1 |J1 ,P1 |J1 ⟩
from Ex. 4.10, and a polynomial interpretation I with IStart (𝑥,𝑦) =
2, IGeo (𝑥) = IQ = 1, and Is (𝑥) = Igeo (𝑥) = 𝑥 + 1. Then geo(𝑥) →
{1/2 : Geo(s(𝑥)), 1/2 : 𝑥}true (21) is weakly decreasing in expecta-

tion when disregarding annotations, since I(geo(𝑥)) = 𝑥 + 1 =
1/2·I(geo(s(𝑥)))+1/2·I(𝑥). Moreover, when regarding annotations,

then all ADPs are strictly decreasing: For (21) we haveI(Geo(𝑥)) =
1 > 1/2 = 1/2 · I(Geo(s(𝑥))), for start(𝑥,𝑦) → {1 : q(Geo(𝑥), 𝑦,
𝑦)}false (20) we have I(Start(𝑥,𝑦)) = 2 > 1 = I(Geo(𝑥)), and for

(22)-(24) we have I(Q (. . .)) = 1 > 0 (as their right-hand sides do

not contain annotations). Since I is a CPI which interprets all an-

notated symbols as constants, we obtain ProcRP (⟨P1 |J1 ,P1 |J1 ⟩) =
(Pol0, ⟨P1 |J1 ,∅⟩), i.e., a solved ADP problem.

For the other ADP problem ⟨P1 |J2 ,P1 |J2 ⟩ from Ex. 4.10, we use

a polynomial interpretation with IStart (𝑥,𝑦) = 𝑥 + 3, IGeo (𝑥) = 1,

and IQ (𝑥,𝑦, 𝑧) = Is (𝑥) = Igeo (𝑥) = 𝑥 + 1. Then (26) is again

weakly decreasing when disregarding annotations. When regard-

ing the annotations, then the ADP (28) is weakly decreasing (since

I(Q (𝑥, 0, s(𝑧))) = 𝑥 + 1 = I(Q (𝑥, s(𝑧), s(𝑧)))), and all other ADPs

are strictly decreasing. Since I is a CPI where Start and Q are

interpreted as linear polynomials, we get ProcRP (⟨P1 |J2 ,P1 |J2 ⟩) =
(Pol1, ⟨P1 |J2 , {(28)}⟩). However, there is no polynomial interpreta-

tion which orients (28) strictly and the other ADPs weakly. Thus,

we need another processor to solve the remaining problem.

4.4 Knowledge Propagation Processor
The dependency graph can not only be used to decompose an ADP

problem ⟨P,S⟩ according to the SCC-prefixes via the dependency

graph processor, but it can also be used to remove an ADP 𝛼 from

S if all “predecessors” of 𝛼 have already been taken into account.

More precisely, let Pre(𝛼) ⊆ P contain all ADPs that can “generate”

a redex for a step with 𝛼 at an annotated position, i.e., Pre(𝛼)
consists of all ADPs 𝛽 ∈ P such that there is an edge from some

DP in dp
⊥ (𝛽) to some DP in dp

⊥ (𝛼) in the P-dependency graph.

Note that dp
⊥ (𝛼) ≠ ∅ for all ADPs 𝛼 . If 𝑑 is the maximal number

of annotated symbols in any term on a right-hand side of an ADP

from P, then in any P-chain tree 𝔗, the probabilities of 𝛼-steps

can be over-approximated as follows. Except for the very first step,

every (at)- or (af)-step with 𝛼 is preceded by a step with some

ADP 𝛽 from Pre(𝛼). Every term in 𝛽’s right-hand side can trigger

at most 𝑑 𝛼-steps. If the 𝛽-step had probability 𝑝 , then adding all

probabilities for these 𝛼-steps yields at most 𝑑 · 𝑝 . Since the very
first step of the tree might also be an 𝛼-step, one obtains

edl⟨P,{𝛼 }⟩ (𝔗) ≤ 1 +∑
𝑣∈𝑉 \Leaf𝔗 , P(𝑣) ∈Pre(𝛼 )×{(at),(af)} 𝑑 · 𝑝𝑣

= 1 + 𝑑 · edl⟨P,Pre(𝛼 ) ⟩ (𝔗) .

This in turn implies erc⟨P,{𝛼 }⟩ (𝑛) ≤ 1 + 𝑑 · erc⟨P,Pre(𝛼 ) ⟩ (𝑛) for all
𝑛 ∈ N, and thus, 𝜄 ⟨P,{𝛼 }⟩ ⊑ 𝜄 ⟨P,Pre(𝛼 ) ⟩ .

Hence, if 𝛼 ∈ S and Pre(𝛼) ∩ S = ∅ (i.e., Pre(𝛼) ⊆ P \ S), then
in any well-formed proof tree with a node 𝑣 where 𝐿A (𝑣) = ⟨P,S⟩,
the ADPs from Pre(𝛼) have already been taken into account in the

path 𝑣1, . . . , 𝑣𝑘 = 𝑣 from the root node 𝑣1 to 𝑣 , i.e.,

𝜄 ⟨P,{𝛼 }⟩ ⊑ 𝜄 ⟨P,Pre(𝛼 ) ⟩ ⊑ 𝜄 ⟨P,P\S⟩ ⊑ 𝐿C (𝑣1) ⊕ · · · ⊕ 𝐿C (𝑣𝑘−1).

As the proof tree already contains knowledge about Pre(𝛼)’s com-

plexity, the knowledge propagation processor removes 𝛼 from S.

Theorem 4.14 (Knowledge Propagation Proc. ). Let ⟨P,S⟩
be an ADP problem, let 𝛼 ∈ S and Pre(𝛼) ∩ S = ∅, where Pre(𝛼)
consists of all ADPs 𝛽 ∈ P such that there is an edge from some DP
in dp

⊥ (𝛽) to some DP in dp
⊥ (𝛼) in the P-dependency graph. Then

the following processor is sound:

ProcKP (⟨P,S⟩) = (Pol0, ⟨P,S \ {𝛼}⟩)

Example 4.15 (Knowledge Propagation Processor). We still have

to solve the ADP problem ⟨P1 |J2 , {(28)}⟩ from Ex. 4.13. We have

dp
⊥ ((28)) = {(18)} and the only DPs with edges to (18) in the depen-

dency graph of Fig. 4 are (14) and (17), where (14) ∈ dp
⊥ ((25)) and

(17) ∈ dp
⊥ ((27)). Thus, Pre((28)) = {(25), (27)}, i.e., in particular

(28) ∉ Pre((28)). Hence, we can apply the knowledge propagation
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⟨A(R1 ), A(R1 ) ⟩Pol0

⟨{(9) − (13)}, {(9) − (13)}⟩Pol0

⟨{(20) − (24)}, {(20) − (24)}⟩Pol0 ⟨{(25) − (29)}, {(25) − (29)}⟩Pol0

⟨{(20) − (24)},∅⟩Pol0 ⟨{(25) − (29)}, {(28)}⟩Pol1

⟨{(25) − (29)},∅⟩Pol0

ProcUR

ProcDG

ProcRP ProcRP

ProcKP

Figure 6: Solved proof tree for R1

processor and obtain ProcKP (⟨P1 |J2 , {(28)}⟩) = (Pol0, ⟨P1 |J2 ,∅⟩),
i.e., the resulting ADP problem is solved.

The solved proof tree is shown in Fig. 6. Thus, we inferred that

R1 is SAST and its complexity is at most linear, i.e., 𝜄R1
⊑ Pol1.

4.5 Probability Removal Processor
Our frameworkmay yield ADP (sub)problemswith non-probabilistic

structure, i.e., where every ADP has the form ℓ → {1 : 𝑟 }𝑚 .
Then, the probability removal processor can switch to ordinary (non-

probabilistic) DT problems for complexity analysis from [53].

These DT problems have four components (P,S,K,R): A set

of dependency tuples P, the subset S ⊆ P that is counted for

complexity, a subset K whose complexity has already been taken

into account (see Remark 3.21), and a set of rewrite rules R.

Theorem 4.16 (Probability Removal Processor). Let ⟨P,S⟩
be an ADP problem where every ADP in P has the form ℓ → {1 : 𝑟 }𝑚 .
Let dt(ℓ → {1 : 𝑟 }𝑚) = ℓ♯ → [𝑡♯

1
, . . . , 𝑡

♯
𝑛] if {𝑡 | 𝑡 ⊴♯ 𝑟 } = {𝑡1, . . . ,

𝑡𝑛}, and let dt(P) = {dt(𝛼) | 𝛼 ∈ P}. Then the expected runtime
complexity of ⟨P,S⟩ is equal to the runtime complexity of the non-
probabilistic DT problem 𝛽 = (dt(P), dt(S), dt(P \ S), np(P)). So
the processor ProcPR (⟨P,S⟩) = (𝑐,∅) is sound if the DT framework
returns 𝑐 as an upper bound on the runtime complexity of 𝛽 .

When proving AST as in [36], one should move to the non-

probabilistic DP framework for termination whenever possible,

because then one can analyze function calls in right-hand sides of

rules separately. In contrast, in the non-probabilistic DT framework

for complexity analysis, one also has to consider all function calls

from a right-hand side simultaneously. However, the switch to the

non-probabilistic setting is still advantageous, since, e.g., the reduc-

tion pair processor of the non-probabilistic DT framework allows

more orderings than just multilinear polynomial interpretations.

4.6 Transformational Processors
The DP and DT frameworks of [3, 21, 53] also provide several pro-

cessors that use narrowing, rewriting, or instantiations to transform
DP/DT problems to simplify the task of proving termination or com-

plexity. To show how to adapt such transformational processors for

our novel ADP framework, we consider the narrowing processor.
Let P = P′ ⊎ {ℓ −→ {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚} be a set of ADPs

and let 𝑡 ⊴♯ 𝑟 𝑗 for some 1 ≤ 𝑗 ≤ 𝑘 . If we have to perform rewrite

steps on (an instance of) 𝑡 in order to enable the next application

of an ADP at an annotated position, then the idea of the narrowing

processor is to perform the first step of this reduction already on

the ADP ℓ −→ {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 via narrowing. So whenever

there is a 𝑡 ⊴♯ 𝑟 𝑗 and a non-variable position 𝜏 in 𝑡 such that

𝑡 |𝜏 unifies with the left-hand side ℓ ′ of some (variable-renamed)

ADP ℓ ′ −→ {𝑝′
1
: 𝑟 ′

1
, . . . , 𝑝′

𝑘′ : 𝑟 ′
𝑘′ }

𝑚′ ∈ P using an mgu 𝛿 such

that ℓ𝛿, ℓ ′𝛿 ∈ ANFP , then 𝛿 is a narrowing substitution of 𝑡 . This is

analogous to the narrowing substitutions defined in [53] for DTs.

As shown in [38], in the probabilistic setting, the narrowing

processor can only be used in a weaker version. Hence, here it was

renamed to the rule overlap instantiation processor. While we can

apply the narrowing substitution to the ADP, we cannot perform

any rewrite steps. To be precise, if 𝛿1, . . . , 𝛿𝑑 are all narrowing

substitutions of 𝑡 , then we can replace ℓ −→ {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚
by ℓ𝛿𝑒 → {𝑝1 : 𝑟1𝛿𝑒 , . . . , 𝑝𝑘 : 𝑟𝑘𝛿𝑒 }, for all 1 ≤ 𝑒 ≤ 𝑑 , but we cannot

perform any rewrite steps on 𝑡𝛿𝑒 directly.

Moreover, there could be another subterm 𝑡 ′ ⊴♯ 𝑟 𝑗 (with 𝑡 ′ ≠ 𝑡 )

which was involved in a chain tree (i.e., 𝑡 ′♯𝜎 i→∗
np(P) ℓ̃�̃� for some

substitutions 𝜎, �̃� and a left-hand side ℓ̃ of an ADP, but this re-

duction is no longer possible when replacing 𝑡 ′ by the instantia-

tions 𝑡 ′𝛿1, . . . , 𝑡 ′𝛿𝑑 . We say that 𝑡 ′ is captured by 𝛿1, . . . , 𝛿𝑑 if for

each narrowing substitution 𝜌 of 𝑡 ′, there is a 𝛿𝑒 with 1 ≤ 𝑒 ≤ 𝑑

such that 𝛿𝑒 is more general than 𝜌 , i.e., 𝜌 = 𝛿𝑒𝜌
′
for some sub-

stitution 𝜌 ′. So the narrowing processor has to add another ADP

ℓ −→ {𝑝1 : ♯capt
1
(𝛿1,...,𝛿𝑑 ) (𝑟1), . . . , 𝑝𝑘 : ♯capt𝑘 (𝛿1,...,𝛿𝑑 ) (𝑟𝑘 )}

𝑚
, where

capt𝑗 (𝛿1, . . . , 𝛿𝑑 ) contains all positions of subterms 𝑡 ′ ⊴♯ 𝑟 𝑗 which

are not captured by the narrowing substitutions 𝛿1, . . . , 𝛿𝑑 of 𝑡 .

Theorem 4.17 (Rule Overlap Instantiation Processor). Let
⟨P,S⟩ be an ADP problem with P = P′ ⊎ {𝛼} for 𝛼 = ℓ −→ {𝑝1 :

𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 , let 1 ≤ 𝑗 ≤ 𝑘 , and let 𝑡 ⊴♯ 𝑟 𝑗 . Let 𝛿1, . . . , 𝛿𝑑 be all
narrowing substitutions of 𝑡 . Then ProcROI (⟨P,S⟩) = (Pol0, {⟨P′ ∪
𝑁, S̃⟩}) is sound, where

𝑁 = {ℓ𝛿𝑒 → {𝑝1 : 𝑟1𝛿𝑒 , . . . , 𝑝𝑘 : 𝑟𝑘𝛿𝑒 }𝑚 | 1 ≤ 𝑒 ≤ 𝑑 }
∪ {ℓ −→ {𝑝1 : ♯capt

1
(𝛿

1
,...,𝛿𝑑 ) (𝑟1 ), . . . , 𝑝𝑘 : ♯

capt𝑘 (𝛿
1
,...,𝛿𝑑 ) (𝑟𝑘 ) }𝑚}

S̃ =

{
(S \ {𝛼 }) ∪ 𝑁, if 𝛼 ∈ S
S, otherwise

Example 4.18 (Rule Overlap Inst. Proc.). Consider RROI from [38].

f (d(𝑥)) → {3/4 : e( f (g(𝑥)), f (h(𝑥)) ), 1/4 : a} g(a) → {1 : d(a)}
h(b) → {1 : d(b)}

RROI has constant runtime complexity, i.e., 𝜄RROI = Pol0, because

for every instantiation, at most one of the two recursive f-calls in
the right-hand side of the f-rule can be evaluated. The reason is

that we can either use the g-rule if 𝑥 is instantiated with a, or we
can apply the h-rule if 𝑥 is instantiated with b, but not both.

With the rule overlap instantiation processor, our ADP frame-

work can determine this constant complexity automatically. Using

the dependency graph processor on the canonical ADP problem

⟨A(RROI),A(RROI)⟩ yields ⟨PROI,PROI⟩, where PROI consists of

f (d(𝑥 ) ) → {3/4 : e( F(g(𝑥 ) ), F(h(𝑥 ) ) ), 1/4 : a}true

g(a) → {1 : d(a) }true

h(b) → {1 : d(b) }true

We apply ProcROI using the term 𝑡 = f (g(𝑥)) whose only narrow-
ing substitution is 𝛿 = {𝑥/a}. For the other subterm F(h(𝑥)) with
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annotated root, f(h(𝑥)) is not captured by 𝛿 . Hence, we generate

an additional ADP where this second subterm is annotated. Thus,

we replace the former f-ADP by the following two new ADPs.

f (d(a) ) → {3/4 : e( F(g(a) ), F(h(a) ) ), 1/4 : a}true

f (d(𝑥 ) ) → {3/4 : e( f (g(𝑥 ) ), F(h(𝑥 ) ) ), 1/4 : a}true

Now one can remove the annotation of F(h(a)) from the first ADP

by the dependency graph processor and then apply the reduction

pair processor with the interpretation that maps F to 1 and all other
symbols to 0 to remove all annotations. This proves 𝜄 ⟨PROI,PROI ⟩ =
𝜄RROI = Pol0. Using a constant polynomial interpretation would not

be possible without the rule overlap instantiation processor.

5 Evaluation
We implemented our new DP framework for upper bounds on the

expected innermost runtime complexity in our termination prover

AProVE [22]. To this end, AProVE first creates the canonical ADPs

and then applies processors according to the following strategy:

First, we try to apply the dependency graph processor ProcDG,

the usable rules processor ProcUR, the knowledge propagation pro-

cessor ProcKP, and the probability removal processor ProcPR in this

order. The advantage of these processors is that they do not rely on

searching (i.e., they are very fast) and they simplify the ADP prob-

lem whenever they are applicable. If none of these processors can

be applied anymore, then we search for CPIs for the reduction pair

processor ProcRP in order to derive polynomial complexity bounds

for certain ADPs (otherwise, we try to apply ProcRP with a non-CPI

polynomial interpretation to derive an exponential bound). As soon

as one of the processors is applied successfully, we re-start the

strategy again, since other processors might be applicable again on

the simplified subproblems. Moreover, before the first application

of the reduction pair processor, we use the rule overlap instantia-

tion processor ProcROI. Since it does not always help in inferring

an upper bound and often increases the number of ADPs, we use

ProcROI only once on a fixed number of terms.

For every PTRS, the user can indicate whether one wants to

analyze termination or complexity, consider arbitrary or only ba-

sic start terms, and whether one wants to analyze innermost or

full rewriting (with an arbitrary rewrite strategy). Since our novel

DP framework only works for innermost rewriting and basic start

terms, if the user asks for complexity analysis or SAST of full rewrit-
ing, we check whether the PTRS belongs to a known class where,

e.g., upper bounds on the expected innermost runtime complexity

are upper bounds w.r.t. an arbitrary rewrite strategy as well. Such

properties were studied in [34, 35]. If one wants to consider arbi-

trary instead of basic start terms, we perform the transformation of

[20] (adapted to PTRSs, see [34, 35]) in order to move from deriva-

tional to runtime complexity, i.e., the PTRS R is transformed into a

new PTRS R′
such that the complexity of R′

on basic start terms is

a bound on the complexity of R on all start terms.

For our evaluation, we used the benchmark set of all 128 PTRSs

from the Termination Problem Data Base [55], i.e., the benchmarks

considered for the annual Termination and Complexity Competition
[23], containing 128 typical probabilistic programs, including ex-

amples with complicated probabilistic structure and probabilistic

algorithms on lists and trees. Note that this set also contains many

examples that are AST, but not SAST. Therefore, we extended the col-

lection by 10 additional examples that are interesting for expected

complexity analysis (including all examples from our paper).

To evaluate how our novel framework proves SAST, we compare

AProVEwith its previous version (called “POLO” in the table below)

whose only way to prove SAST was to search for a monotonic,

multilinear polynomial interpretation such that all rules of the

PTRS are strictly decreasing [7], and with the tool NaTT [57] that

implements polynomial and matrix interpretations to prove SAST.
Thus, POLO and NaTT neither consider a specific rewrite strategy

nor start terms. As shown by the experiments on all 138 PTRSs

in the first table below, our novel ADP framework increases the

power of proving SAST significantly.

Strategy Start Terms POLO NaTT AProVE
Full Arbitrary 30 33 35

Full Basic 30 33 44

Innermost Arbitrary 30 33 54

Innermost Basic 30 33 62

Strategy Start Terms Pol0 Pol1 Pol2 Exp 2-Exp 𝜔

Full Arbitrary 2 21 0 11 1 103

Full Basic 15 25 1 3 0 94

Innermost Arbitrary 2 47 0 5 0 84

Innermost Basic 25 35 0 2 0 76

The second table shows the upper bounds inferred by AProVE.
So AProVE obtains numerous constant and/or linear bounds, even

for full rewriting and/or arbitrary start terms. Note that in contrast

to the non-probabilistic setting, a PTRS with expected constant

runtime is not necessarily trivial as it can have evaluations of un-

bounded (and even infinite) length. However, the transformation of

[20] to move from arbitrary to basic start terms may add rules with

linear runtime to the PTRS. This explains the low number of con-

stant upper bounds for arbitrary start terms. Due to the restriction to

multilinear polynomial interpretations, Pol𝑎 for 𝑎 > 1 can currently

only be inferred from multilinear, but non-linear interpretations

like I
𝑓 ♯
(𝑥,𝑦) = 𝑥 · 𝑦. In the future, we intend to extend our im-

plementation to also use, e.g., matrix orderings [17] in order to

improve the inference of polynomial bounds of higher degrees.

For more details on our experiments, the collection of examples,

and for instructions on how to run our implementation in AProVE
via its web interface or locally, we refer to:

https://aprove-developers.github.io/PTRSExpectedRuntime/

6 Conclusion
In this paper, we presented the first DP framework to infer upper

bounds on the expected innermost runtime complexity of PTRSs

automatically. Our implementation in AProVE is the first tool for au-
tomatic complexity analysis of PTRSs and it improves substantially

over previous tools to analyze SAST of PTRSs.

There are several directions for future work, e.g., by extend-

ing the reduction pair processor of Thm. 4.12 to other orderings,

by adapting further transformational processors to our new ADP

framework, and by developing variants of our framework that are

directly applicable for full instead of innermost rewriting and/or

for arbitrary instead of basic start terms.
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A Additional Theory and Proofs
In this appendix, we first present some additional theory on the size

of a term under a polynomial interpretation in Sect. A.1. Afterwards,

we prove all our theorems and lemmas in Sect. A.2.

A.1 Size of Polynomial Interpretations
We first analyze the size of I0 (𝑡) for every term 𝑡 and every poly-

nomial interpretation I. Here, I0 denotes the interpretation that

behaves like I, and in addition, maps every variable to 0.

A.1.1 Size of Constructor Terms. Let I be a CPI. Recall that a CPI

I guarantees that I(𝑓 (𝑥1, . . . , 𝑥𝑛)) = 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑏, with

𝑎𝑖 ∈ {0, 1}, 𝑏 ∈ N for all constructors 𝑓 ∈ Σ𝐶 . Let 𝑠 ∈ T (C,V) be
a constructor term, i.e., a term containing only constructors and

variables. Let 𝑏𝑚𝑎𝑥 be the maximum of all 𝑏 for all constructors

𝑓 ∈ Σ𝐶 . For |𝑠 | = 1 we get I0 (𝑠) ≤ 𝑏𝑚𝑎𝑥 , and for |𝑠 | = 𝑛 + 1 we get

I0 (𝑠) ≤ I0 (𝑠′) + 𝑏𝑚𝑎𝑥 for some constructor term 𝑠′ with |𝑠′ | = 𝑛.

Hence, for every term 𝑠 ∈ T (C,V) we obtain I0 (𝑠) ≤ 𝑏𝑚𝑎𝑥 · |𝑠 |.
Next, let I not be a CPI but linear on constructors, i.e., I(𝑓 (𝑥1,

. . . , 𝑥𝑛)) = 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑏, with 𝑎1, . . . , 𝑎𝑛, 𝑏 ∈ N for all

constructors 𝑓 ∈ Σ𝐶 . Let 𝑏𝑚𝑎𝑥 be the maximum of all 𝑏 and 𝑎𝑚𝑎𝑥 be

the maximum of all 𝑎. Again, let 𝑠 ∈ T (C,V). For |𝑠 | = 1 we get

I0 (𝑠) ≤ 𝑏𝑚𝑎𝑥 , and for |𝑠 | = 𝑛+ 1we get I0 (𝑠) ≤ 𝑎𝑚𝑎𝑥 · I0 (𝑠′) +𝑏𝑚𝑎𝑥

for some constructor term 𝑠′ with |𝑠′ | = 𝑛. This is a first-order

non-homogeneous linear recurrence relation, which can be upper-

bounded by 2
pol( |𝑠 | )

, for some polynomial pol(𝑛) in 𝑛, i.e., we have
I0 (𝑠) ∈ O(2pol( |𝑠 | ) ).

Finally, if I is not a CPI and not even linear on constructors,

e.g., I(𝑓 (𝑥1, 𝑥2)) = 𝑥1 · 𝑥2 or I(𝑓 (𝑥1, 𝑥2)) = 𝑥2
1
+ 𝑥2

2
, then we can

only guarantee that I0 (𝑠) ≤ 2
2
pol( |𝑠 |)

, for some polynomial pol(𝑛)
in 𝑛. To be precise, let 𝑎𝑚𝑎𝑥 be the maximum coefficient of all

non-constant monomials in all interpretations 𝐼𝑓 of constructors

𝑓 , and let 𝑏𝑚𝑎𝑥 be the maximum constant monomial in all these

interpretations. Moreover, let 𝑐𝑚𝑎𝑥 be the maximum degree of all

I(𝑓 (𝑥1, . . . , 𝑥𝑛)), and 𝑘 be the maximal arity for all constructors

𝑓 ∈ Σ𝐶 . For |𝑠 | = 1 we again have I0 (𝑠) ≤ 𝑏𝑚𝑎𝑥 , and for |𝑠 | = 𝑛 + 1

we get I0 (𝑠) ≤ 2
𝑘 · 𝑎𝑚𝑎𝑥 · I0 (𝑠′)𝑐𝑚𝑎𝑥 + 𝑏𝑚𝑎𝑥 for some constructor

term 𝑠′ with |𝑠′ | = 𝑛. After conversion to homogeneous form,

and taking the log on both sides, we result in a first-order linear

recurrence relation again. Hence, we have log(I0 (𝑠)) ≤ 2
pol( |𝑠 | )

,

for some polynomial pol(𝑛), i.e., we have I0 (𝑠) ∈ O(22pol
′ ( |𝑠 |) ), for

some polynomial pol
′ (𝑛).

A.1.2 Size of Basic Terms. First, let I be a CPI where I(𝑓 (𝑥1, . . . ,
𝑥𝑛)) = 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 + 𝑏, with 𝑎𝑖 ∈ {0, 1}, 𝑏 ∈ N for all con-

structors 𝑓 ∈ Σ𝐶 . Again, let 𝑏𝑚𝑎𝑥 be the maximum of all 𝑏 for all

constructors 𝑓 ∈ Σ𝐶 . Moreover, let 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑛) ∈ TBR of size

|𝑡 | = 𝑛. Here, we have

I0 (𝑡) = I𝑓 (I0 (𝑡1), . . . ,I0 (𝑡𝑛))
≤ I𝑓 (𝑏𝑚𝑎𝑥 · |𝑡1 |, . . . , 𝑏𝑚𝑎𝑥 · |𝑡𝑛 |)
≤ I𝑓 (𝑏𝑚𝑎𝑥 · |𝑡 |, . . . , 𝑏𝑚𝑎𝑥 · |𝑡 |)
≤ 𝑏𝑚𝑚𝑎𝑥 · I𝑓 ( |𝑡 |, . . . , |𝑡 |), where𝑚 is the degree of I𝑓

Hence, we have I0 (𝑡) ∈ O(|𝑡 |𝑚).
If I is only linear on constructors, we get I0 (𝑡) ∈ O(2pol( |𝑡 | ) ),

and if I is not linear, we obtain I0 (𝑡) ∈ O(22pol( |𝑡 |) ) in a similar

fashion.

A.1.3 Size of Arbitrary Terms. If we haveI(𝑓 (𝑥1, . . . , 𝑥𝑛)) = 𝑎1𝑥1+
. . . + 𝑎𝑛𝑥𝑛 + 𝑏 with 𝑎𝑖 ∈ {0, 1}, 𝑏 ∈ N for all 𝑓 ∈ Σ, then I0 (𝑡) ∈
O(|𝑡 |). If I is linear for all 𝑓 ∈ Σ, then I0 (𝑡) ∈ O(2pol( |𝑡 | ) ), and if

I is not linear, we obtain I0 (𝑡) ∈ O(22pol( |𝑡 |) ).

A.1.4 Bounds on Expected Complexity via Polynomials. Assume

that there exists a monotonic polynomial interpretation I such that

I(ℓ) > I(𝑟 ) for every rule ℓ → 𝑟 ∈ R. Since the interpretation is

decreasing for every rule and bounded from below by 0, the inter-

pretation I(𝑡) of a term 𝑡 gives an upper bound on its derivation

height. Hence, e.g., if I is a CPI, then the runtime complexity is

at most Pol𝑚 , where𝑚 is the highest degree of I𝑓 for any defined

symbol 𝑓 .

A.2 Proofs
To prove the soundness of the chain criterion, we proceed as fol-

lows: Given an R-RST 𝔗 that starts with the basic term 𝑡 , we cre-

ate an A(R)-CT 𝔗′
that starts with 𝑡♯ and mirrors every rewrite

step by using the corresponding ADP for the used rewrite rule.

We will show that each rewrite step takes place at an annotated

position, i.e., we always use case (at) with the ADPs. Since the

resulting CT has the same structure as the original RST (same

nodes with the same probabilities) and we only have (at)-steps
(that we count for the expected derivation length of a CT), we get

edl(𝔗) = edl⟨A(R),A(R) ⟩ (𝔗′) for every such RST 𝔗, and hence

edhR (𝑡) ≤ edh⟨A(R),A(R) ⟩ (𝑡) for every basic term 𝑡 . For the other

direction, i.e., edhR (𝑡) ≥ edh⟨A(R),A(R) ⟩ (𝑡), we transform every

A(R)-CT 𝔗 into an R-RST 𝔗′
by simply removing all occurring

annotations. Then, we directly get edl(𝔗′) = edl⟨A(R),A(R) ⟩ (𝔗)
again.

When applying an ADP, we may remove annotations of normal

forms, hence, we define the set of all positions of subterms that are

not in normal form. During the construction of the proof of the

chain criterion, we show that at least those positions are annotated.

In the following, as usual we say that two positions 𝜋1 and 𝜋2 are

orthogonal (or parallel) if 𝜋1 is not above 𝜋2 and 𝜋2 is not above 𝜋1.

Definition A.1 (PosD∧¬NFR ). Let R be a PTRS. For a term 𝑡 ∈ T
we define PosD∧¬NFR (𝑡) = {𝜋 | 𝜋 ∈ PosD (𝑡), 𝑡 |𝜋 ∉ NFR }.

Theorem 3.13 (Chain Criterion). Let R be a PTRS. Then for all
basic terms 𝑡 ∈ TBR we have

edhR (𝑡) = edh⟨A(R),A(R) ⟩ (𝑡)
14
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and therefore 𝜄R = 𝜄 ⟨A(R),A(R) ⟩ .

Proof. In the following, we will often implicitly use that for an

annotated term 𝑡 ∈ T ♯
, we have ♭(𝑡) ∈ ANFR iff 𝑡 ∈ ANFA(R) since a

rewrite rule and its corresponding canonical annotated dependency

pair have the same left-hand side.

Soundness (edhR (𝑡) ≤ edh⟨A(R),A(R) ⟩ (𝑡)): Let 𝔗 = (𝑉 , 𝐸, 𝐿) be
an R-RST whose root is labeled with (1 : 𝑡) for some term 𝑡 ∈ TBR .
We create aA(R)-CT𝔗′ = (𝑉 , 𝐸, 𝐿′) that starts with 𝑡♯ andmirrors

every rewrite step by using the ADP corresponding to the used

rewrite rule. Moreover, we ensure that every rewrite step is an

(at)-step, and hence, we have edl(𝔗) = edl⟨A(R),A(R) ⟩ (𝔗′).
We construct the new labeling 𝐿′ for the A(R)-CT inductively

such that for all inner nodes 𝑥 ∈ 𝑉 \ Leaf with children nodes

𝑥𝐸 = {𝑦1, . . . , 𝑦𝑘 } we have 𝑡 ′𝑥
i
↩−→A(R) { 𝑝𝑦1

𝑝𝑥
: 𝑡 ′𝑦1 , . . . ,

𝑝𝑦𝑘
𝑝𝑥

: 𝑡 ′𝑦𝑘 }
and use Case (at). Let 𝑋 ⊆ 𝑉 be the set of nodes 𝑥 where we have

already defined the labeling 𝐿′ (𝑥). During our construction, we

ensure that the following property holds for all 𝑥 ∈ 𝑋 :

♭(𝑡𝑥 ) = ♭(𝑡 ′𝑥 ) ∧ PosD∧¬NFR (𝑡𝑥 ) ⊆ PosD♯ (𝑡 ′𝑥 ). (30)

This means that the corresponding term 𝑡𝑥 for the node 𝑥 in 𝔗 has

the same structure as the term 𝑡 ′𝑥 in 𝔗′
, and additionally, all the

possible redexes in 𝑡𝑥 are annotated in 𝑡 ′𝑥 .

R-RST: 1 𝑡

𝑝1 𝑡1 𝑝2 𝑡2

𝑝3 𝑡3 𝑝4 𝑡4 𝑝5 𝑡5

. . . . . . . . .

{

A(R)-CT: 1 ♯D (𝑡 )

(at)

𝑝1 𝑡 ′
1

(at)

𝑝2 𝑡 ′
2

(at)

𝑝3 𝑡 ′
3

(at)

𝑝4 𝑡 ′
4

(at)

𝑝5 𝑡 ′
5

(at)

. . . . . . . . .

We label the root of 𝔗′
with ♯D (𝑡). Here, we obviously have

♭(𝑡) = ♭(♯D (𝑡)) and PosD∧¬NFR (𝑡) ⊆ PosD (𝑡) = PosD♯ (♯D (𝑡)).
As long as there is still an inner node 𝑥 ∈ 𝑋 such that its successors

are not contained in 𝑋 , we do the following. Let 𝑥𝐸 = {𝑦1, . . . , 𝑦𝑘 }
be the set of its successors. We need to define the corresponding

terms 𝑡 ′𝑦1 , . . . , 𝑡
′
𝑦𝑘

for the nodes 𝑦1, . . . , 𝑦𝑘 . Since 𝑥 is not a leaf, we

have 𝑡𝑥
i→R { 𝑝𝑦1

𝑝𝑥
: 𝑡𝑦1 , . . . ,

𝑝𝑦𝑘
𝑝𝑥

: 𝑡𝑦𝑘 }. This means that there

is a rule ℓ → {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 } ∈ R, a position 𝜋 , and a

substitution 𝜎 such that 𝑡𝑥 |𝜋 = ℓ𝜎 ∈ ANFR . Furthermore, we have

𝑡𝑦 𝑗 = 𝑡𝑥 [𝑟 𝑗𝜎]𝜋 for all 1 ≤ 𝑗 ≤ 𝑘 . So the labeling of the successor 𝑦 𝑗

in 𝔗 is 𝐿(𝑦 𝑗 ) = (𝑝𝑥 · 𝑝 𝑗 : 𝑡𝑥 [𝑟 𝑗𝜎]𝜋 ) for all 1 ≤ 𝑗 ≤ 𝑘 .

The corresponding ADP for the rule is ℓ → {𝑝1 : ♯D (𝑟1), . . . , 𝑝𝑘 :

♯D (𝑟𝑘 )}true. Furthermore, 𝜋 ∈ PosD∧¬NFR (𝑡𝑥 ) ⊆ PosD♯ (𝑡 ′𝑥 ) and
♭(𝑡𝑥 ) = ♭(𝑡 ′𝑥 ) by the induction hypothesis. Hence, we can rewrite

𝑡 ′𝑥 with ℓ → {𝑝1 : ♯D (𝑟1), . . . , 𝑝𝑘 : ♯D (𝑟𝑘 )}true, using the position

𝜋 and the substitution 𝜎 , and Case (at) applies. We get 𝑡 ′𝑥
i
↩−→A(R)

{𝑝1 : 𝑡 ′𝑦1 , . . . , 𝑝𝑘 : 𝑡 ′𝑦𝑘 } with 𝑡 ′𝑦 𝑗 = 𝑡 ′𝑥 [♯D (𝑟 𝑗 )𝜎]𝜋 . This means that

we have ♭(𝑡𝑦 𝑗 ) = ♭(𝑡 ′𝑦 𝑗 ). It remains to prove PosD∧¬NFR (𝑡𝑦 𝑗 ) ⊆
PosD♯ (𝑡 ′𝑦 𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑘 . For all 𝜏 ∈ PosD∧¬NFR (𝑡𝑦 𝑗 ) =

PosD∧¬NFR (𝑡𝑥 [𝑟 𝑗𝜎]𝜋 ) that are orthogonal or above 𝜋 , we have

𝜏 ∈ PosD∧¬NFR (𝑡𝑥 ,R) ⊆ PosD♯ (𝑡 ′𝑥 ) by the induction hypothesis,

and all annotations orthogonal or above 𝜋 remain in 𝑡 ′𝑦 𝑗 as theywere

in 𝑡 ′𝑥 . For all positions 𝜏 ∈ PosD∧¬NFR (𝑡𝑦 𝑗 ) = PosD∧¬NFR (𝑡𝑥 [𝑟 𝑗𝜎]𝜋 )
that are below 𝜋 , we know that, due to innermost evaluation, at

least the defined root symbol of a term that is not in normal form

must be inside 𝑟 𝑗 , and thus 𝜏 ∈ PosD♯ (𝑡 ′𝑦 𝑗 ), as all defined symbols

of 𝑟 𝑗 are annotated in 𝑡 ′𝑦 𝑗 = 𝑡 ′𝑥 [♯D (𝑟 𝑗 )𝜎]𝜋 .
Completeness (edhR (𝑡) ≥ edh⟨A(R),A(R) ⟩ (𝑡)): Let 𝔗 = (𝑉 , 𝐸, 𝐿)
be an A(R)-RST whose root is labeled with (1 : 𝑡♯) for some

term 𝑡 ∈ TBR . We create a R-RST 𝔗′ = (𝑉 , 𝐸, 𝐿′) that starts
with 𝑡 and mirrors every rewrite step by using the correspond-

ing original probabilistic rule for the used ADP. Hence, we get

edl⟨A(R),A(R) ⟩ (𝔗) = edl(𝔗′).
We label all nodes 𝑥 ∈ 𝑉 in 𝔗′

with ♭(𝑡𝑥 ), where 𝑡𝑥 is the term

for the node 𝑥 in 𝔗, i.e., we remove all annotations. We only have

to show that 𝔗′
is indeed a valid RST, i.e., that the edge relation

represents valid rewrite steps with →R , but this follows directly
from the fact that if we remove all annotations in Def. 3.5, then we

get the ordinary probabilistic term rewrite relation again.

A(R)-CT: 1 𝑡

𝑝1 𝑡1 𝑝2 𝑡2

𝑝3 𝑡3 𝑝4 𝑡4 𝑝5 𝑡5

. . . . . . . . .

{

R-RST: 1 ♭(𝑡 )

𝑝1 ♭(𝑡1 ) 𝑝2 ♭(𝑡2 )

𝑝3 ♭(𝑡3 ) 𝑝4 ♭(𝑡4 ) 𝑝5 ♭(𝑡5 )

. . . . . . . . .

■

Lemma 3.19 (Sound Processors Preserve Well-Formedness).

Let 𝔓 = (𝑉 , 𝐸, 𝐿A, 𝐿C) be a proof tree with a leaf 𝑣 where 𝐿A (𝑣) is
not solved, and let Proc be a sound processor such that Proc(𝐿A (𝑣)) =
(𝑐, {⟨P1,S1⟩, . . . , ⟨P𝑛,S𝑛⟩}). Let 𝔓′ result from 𝔓 by adding fresh
nodes 𝑤1, . . . ,𝑤𝑛 and edges (𝑣,𝑤1), . . . , (𝑣,𝑤𝑛), where the labeling
is extended such that 𝐿A (𝑤𝑖 ) = ⟨P𝑖 ,S𝑖⟩ for all 1 ≤ 𝑖 ≤ 𝑛 and
𝐿C (𝑣) = 𝑐 . Then𝔓′ is also well formed.

Proof. For the first condition required for well-formed proof

trees, note that in𝔓, we had 𝐿′C (𝑣) = 𝜄 ⟨P,S⟩ , because 𝑣 was a leaf.
Since 𝑣 is not a leaf anymore in𝔓′

, here we have 𝐿′C (𝑣) = 𝐿C (𝑣) = 𝑐 .

However, 𝑣 now has the children 𝑤1, . . . ,𝑤𝑛 . Let 𝑣1, . . . , 𝑣𝑘 = 𝑣 be

the path from the root to 𝑣 . Hence, we obtain

𝐿C (𝑣1) ⊕ . . . ⊕ 𝐿C (𝑣𝑘−1) ⊕ 𝜄 ⟨P,S⟩

⊑ 𝐿C (𝑣1) ⊕ . . . ⊕ 𝐿C (𝑣𝑘−1) ⊕ 𝑐 ⊕ 𝜄 ⟨P1,S1 ⟩ ⊕ . . . ⊕ 𝜄 ⟨P𝑛 ,S𝑛 ⟩ (†)
= 𝐿C (𝑣1) ⊕ . . . ⊕ 𝐿C (𝑣𝑘−1) ⊕ 𝐿C (𝑣𝑘 ) ⊕ 𝐿′C (𝑤1) ⊕ . . . 𝐿′C (𝑤𝑛)

Here, (†) holds due to the first condition (7) of Def. 3.18 Thus,𝔓′

also satisfies the first condition for well-formed proof trees.

Now we consider the second condition required for well-formed

proof trees. Since𝔓 is well formed and Proc is sound, the second

condition (8) of Def. 3.18 implies that 𝜄 ⟨P𝑖 ,P𝑖 \S𝑖 ⟩ ⊑ 𝐿C (𝑣1) ⊕ · · · ⊕
𝐿C (𝑣𝑘−1) ⊕ 𝐿C (𝑣𝑘 ) with 𝐿C (𝑣𝑘 ) = 𝑐 holds for all 1 ≤ 𝑖 ≤ 𝑛. Hence,

𝔓′
is well-formed as well. ■

Theorem 4.2 (Usable Rules Pr.).For an ADP problem ⟨P,S⟩, let

P′ = U(P) ∪ {ℓ → 𝜇false | ℓ → 𝜇𝑚 ∈ P \ U(P)},
S′ = (S ∩ U(P)) ∪ {ℓ → 𝜇false | ℓ → 𝜇𝑚 ∈ S \ U(P)}.

Then, ProcUR (⟨P,S⟩) = (Pol0, {⟨P′,S′⟩}) is sound.
15
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Proof. Let𝔓 be a well-formed proof tree with 𝐿A (𝑣) = ⟨P,S⟩
and let 𝑣1, . . . , 𝑣𝑘 = 𝑣 be the path from the root node 𝑣1 to 𝑣 . More-

over, let 𝐿A (𝑤) = ⟨P′,S′⟩ for the only successor 𝑤 of 𝑣 in the

proof tree.

We first show that (7) holds, i.e.,

𝜄 ⟨P,S⟩ ⊑ 𝐿C (𝑣1) ⊕ ... ⊕ 𝐿C (𝑣𝑘−1) ⊕ Pol0 ⊕𝜄 ⟨P′,S′ ⟩

Every P-CT can also be seen as a P′
-CT, since in innermost reduc-

tions, variables are always instantiated with normal forms. Thus,

the only rules applicable to the right-hand side of ADPs are the

usable rules. Additionally, we start with basic terms, and hence, in

every P-CT only usable rules can be applied below the root of an

annotated subterm. Thus, we have 𝜄 ⟨P,S⟩ = 𝜄 ⟨P′,S′ ⟩ , which directly

implies (7).

The condition (8) follows by the same reasoning: Every P′
-CT

can also be seen as a P-CT, so that 𝜄 ⟨P′,P′\S′ ⟩ = 𝜄 ⟨P,P\S⟩ . By well-

formedness of𝔓, we have 𝜄 ⟨P,P\S⟩ ⊑ 𝐿C (𝑣1) ⊕· · ·⊕𝐿C (𝑣𝑘−1). Thus,
𝜄 ⟨P′,P′\S′ ⟩ = 𝜄 ⟨P,P\S⟩ implies (8). ■

Theorem 4.9 (Dependency Graph Proc.). Let ⟨P,S⟩ be an ADP
problem and let J be an SCC-prefix of the P-dependency graph. For
any ADP 𝛼 = ℓ → {𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 ∈ P let 𝛼 |J = ℓ → {𝑝1 :
♯Φ1 (𝑟1), . . . , 𝑝𝑘 : ♯Φ𝑘 (𝑟𝑘 )}𝑚 where for 1 ≤ 𝑗 ≤ 𝑘 , we have 𝜋 ∈ Φ𝑗

iff there exists an ℓ♯ → 𝑡♯ ∈ J such that 𝑡 ⊴𝜋
♯
𝑟 𝑗 . Similarly, let

P|J = {𝛼 |J | 𝛼 ∈ P} and S|J = {𝛼 |J | 𝛼 ∈ S}.
Then ProcDG (⟨P,S⟩) = (Pol0, {⟨P|J ,S|J⟩ | J is an SCC-prefix

of the P-dependency graph }) is sound.

Proof. Let𝔓 be a well-formed proof tree with 𝐿A (𝑣) = ⟨P,S⟩,
let 𝑣1, . . . , 𝑣𝑘 = 𝑣 be the path from the root node 𝑣1 to 𝑣 , and let

𝑐 (𝑣1,...,𝑣𝑘 ) = 𝐿C (𝑣1) ⊕ ... ⊕ 𝐿C (𝑣𝑘−1).
Let {J1, . . . ,J𝑛} be the set of all SCC-prefixes of the P-depen-

dency graph. To show that (7) holds, it suffices to show

𝜄 ⟨P,S⟩ ⊑ 𝜄 ⟨P |J
1
,S|J

1
⟩ ⊕ ... ⊕ 𝜄 ⟨P |J𝑛 ,S|J𝑛 ⟩ ⊕ 𝑐 (𝑣1,...,𝑣𝑘 )

Let 𝔗 = (𝑉 , 𝐸, 𝐿) be a P-CT that starts with the term 𝑡♯ at the

root. We will create 𝑛 trees 𝔗1, . . . ,𝔗𝑛 from 𝔗 such that 𝔗𝑖 is a

P|J𝑖 -CT that starts with 𝑡♯ and

edl⟨P,S⟩ (𝔗) (31)

≤ edl⟨P |J
1
,S|J

1
⟩ (𝔗1) + . . . + edl⟨P |J𝑛 ,S|J𝑛 ⟩ (𝔗𝑛) + 𝐵 ·𝑄 + 𝐷,

where 𝐵, 𝐷 ∈ N are constants and

𝑄 = edl⟨P|J
1
,S|J

1
⟩ (𝔗1 ) + . . . + edl⟨P|J𝑛 ,S|J𝑛 ⟩ (𝔗𝑛 ) + edl⟨P,P\S⟩ (𝔗) .

While “edl⟨P |J𝑖 ,S|J𝑖 ⟩ (𝔗𝑖 )” considers all (at)- and (af)-steps per-
formed with ADPs corresponding to DPs from J𝑖 , “𝐵 ·𝑄 + 𝐷” con-

siders all (at)- and (af)-steps that do not occur in any 𝔗𝑖 anymore.

As (31) holds for every P-CT 𝔗, we get 𝜄 ⟨P,S⟩ ⊑ 𝜄 ⟨P |J
1
,S|J

1
⟩ ⊕

... ⊕ 𝜄 ⟨P |J𝑛 ,S|J𝑛 ⟩ ⊕ 𝜄 ⟨P,P\S⟩ and by well-formedness of𝔓we obtain

𝜄 ⟨P,P\S⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) , which implies (7).

We first present the construction to get from 𝔗 to 𝔗1, . . . ,𝔗𝑛 ,

and afterwards, we show that the number of (at)- and (af)-steps
performed in 𝔗 that are not performed in any 𝔗1, . . . ,𝔗𝑛 is ≤
𝐵 ·𝑄 + 𝐷 for some constants 𝐵, 𝐷 ∈ N, which implies (31)

1. Every P-CT gives rise to 𝑛 CTs 𝔗1, . . . ,𝔗𝑛

Let 1 ≤ 𝑖 ≤ 𝑛. We will construct the P|J𝑖 -CT 𝔗𝑖 = (𝑉 , 𝐸, 𝐿𝑖 ) using
the same underlying tree structure, an adjusted labeling such that

𝑝𝔗𝑥 = 𝑝𝔗
′

𝑥 for all 𝑥 ∈ 𝑉 , and the term at the root of 𝔗𝑖 will still be

labeled with (1 : 𝑡♯).
We now recursively define the new labeling 𝐿′ for the P|J𝑖 -CT

𝔗𝑖 . Let𝑋 ⊆ 𝑉 be the set of nodes where we have already defined the

labeling 𝐿′. During our construction, we ensure that the following
property holds for all 𝑥 ∈ 𝑋

♭(𝑡𝑥 ) = ♭(𝑡 ′𝑥 ) ∧ PosD♯ (𝑡𝑥 ) \ Junk(𝑡𝑥 ,J𝑖 ) ⊆ PosD♯ (𝑡 ′𝑥 ). (32)

Here, for any annotated term 𝑡𝑥 , let Junk(𝑡𝑥 ,J𝑖 ) denote the set of all
positions of annotations in 𝑡𝑥 that will never be used for a rewrite

step in 𝔗 with some ADP that corresponds to the DPs from J𝑖 . We

define Junk(𝑡𝑥 ,J𝑖 ) recursively: For the term 𝑡 at the root, we define

Junk(𝑡,J𝑖 ) = ∅. For a node 𝑦 𝑗 for some 1 ≤ 𝑗 ≤ 𝑘 with predecessor

𝑥 such that 𝑡𝑥
i
↩−→P { 𝑝𝑦1

𝑝𝑥
: 𝑡𝑦1 , . . . ,

𝑝𝑦𝑘
𝑝𝑥

: 𝑡𝑦𝑘 } at position 𝜋 , we define
Junk(𝑡𝑦 𝑗 ,J𝑖 ) = {𝜌 | 𝜌 ∈ Junk(𝑡𝑥 ,J𝑖 ), 𝜋 ≮ 𝜌} if 𝜋 ∉ PosD♯ (𝑡𝑥 ), and
otherwise we define Junk(𝑡𝑦 𝑗 ,J𝑖 ) to be the union of {𝜌 | 𝜌 ∈
Junk(𝑡𝑥 ,J𝑖 ), 𝜋 ≮ 𝜌} (all positions that were already in Junk(𝑡𝑥 ,J𝑖 )
and are not below 𝜋 ), and {𝜋.𝜌 | 𝜌 ∈ PosD♯ (𝛼), 𝜌 ∉ PosD♯ (𝛼 |J𝑖 )}
(all annotated positions where the annotation was removed by the

dependency graph processor within the ADP). Here, as usual, 𝜋 < 𝜌

means that 𝜋 is strictly above 𝜌 (i.e., 𝜋 is a proper prefix of 𝜌).

We start with the same term 𝑡 at the root. Here, our property (32)

is clearly satisfied. As long as there is still an inner node 𝑥 ∈ 𝑋 such

that its successors are not contained in 𝑋 , we do the following:

Let 𝑥𝐸 = {𝑦1, . . . , 𝑦𝑘 } be the set of its successors. We need to

define the terms for the nodes 𝑦1, . . . , 𝑦𝑘 in 𝔗𝑖 . Since 𝑥 is not a leaf

and 𝔗 is a P-CT, we have 𝑡𝑥
i
↩−→P { 𝑝𝑦1

𝑝𝑥
: 𝑡𝑦1 , . . . ,

𝑝𝑦𝑘
𝑝𝑥

: 𝑡𝑦𝑘 }.
If we performed a step with

i
↩−→P using the ADP 𝛼 , the position

𝜋 and the substitution 𝜎 in 𝔗, then we can use the ADP 𝛼 |J𝑖 with
the same position 𝜋 and the same substitution 𝜎 .

Now, we directly obtain (32) for all 𝑡𝑦 𝑗 with 1 ≤ 𝑗 ≤ 𝑘 , since the

original rule contains the same terms with more annotations, but

all missing annotations are in Junk(𝑡𝑥 ,J𝑖 ).
2. Removed (at)- and (af)-steps are bounded by 𝐵 ·𝑄 + 𝐷 .
During the above construction, it can happen that (at)- or (af)-
steps from𝔗 are replaced by only (nt)- and (nf)-steps in all𝔗1, . . . ,

𝔗𝑛 . The number of those rewrite steps is bounded by 𝐵 ·𝑄+𝐷 . To be

precise, we infer a bound the number of rewrite steps taking place

at a term 𝑡𝑥 in node 𝑥 ∈ 𝑋 at a position 𝜋 ∈ ⋃
1≤𝑖≤𝑛 Junk(𝑡𝑥 ,J𝑖 )

with an ADP from S. Note that those rewrite steps belong to DPs

that do not reach any SCCwithin the dependency graph, e.g., leaves.

Moreover, we can bound the number of such rewrite steps, similar

to the bound used for the knowledge propagation processor, by

its (not necessarily direct) predecessors from an SCC-prefix or the

ADP initially used at the root.

Let 𝛼 ∈ S be an ADP such that all DPs in dp
⊥ (𝛼) cannot reach

any SCC within the dependency graph. We will obtain a bound

on edl⟨P,{𝛼 }⟩ (𝔗) using the complexity of the “predecessor SCC-

prefixes”, i.e., those SCC-prefixes that can lead to an 𝛼-step at an

annotated position later in the chain tree.

Let 𝑑 be the maximal number of annotated symbols in any term

on a right-hand side of an ADP from P. Every term in the multi-

distribution of some right-hand side of some ADP 𝛽 with a DP in

dp
⊥ (𝛽) that is a direct predecessor of someDP in dp

⊥ (𝛼) can trigger
at most 𝑑 𝛼-steps. Recall that even if 𝛼 contains no annotations, we

still have dp
⊥ (𝛼) ≠ ∅. Moreover, every ADP with a DP in dp

⊥ (𝛽)
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that is a 2-step predecessor of some DP in dp
⊥ (𝛼) (i.e., we can reach

a DP in dp
⊥ (𝛼) from a DP in dp

⊥ (𝛽) in at most 2 steps) can trigger

at most 𝑑2 𝛼-steps. In general, every 𝑒-step predecessor can trigger

at most 𝑑𝑒 𝛼-steps. A path in the dependency graph starting at a DP

from some SCC-prefix that reaches a DP from dp
⊥ (𝛼) without node

repetition has a length of at most |dp(P)|. Moreover, we can also

create 𝛼-steps without going through an SCC-prefix, by following

a path from the initially used ADP to 𝛼 . Overall, we get

edl⟨P,{𝛼 }⟩ (𝔗) ≤ 𝑑 |dp(P) | · (1 +
𝑛∑︁
𝑖=1

edl⟨P |J𝑖 ,P|J𝑖 ⟩ (𝔗𝑖 )) . (33)

Since SCC-prefixes may contain nodes from dp(S) and dp(P \ S)
we have

edl⟨P |J𝑖 ,P|J𝑖 ⟩ (𝔗𝑖 )
= edl⟨P |J𝑖 ,S|J𝑖 ⟩ (𝔗𝑖 ) + edl⟨P |J𝑖 ,P|J𝑖 \S |J𝑖 ⟩ (𝔗𝑖 )
≤ edl⟨P |J𝑖 ,S|J𝑖 ⟩ (𝔗𝑖 ) + edl⟨P,P\S⟩ (𝔗). (34)

Hence, we even have

edl⟨P,{𝛼 }⟩ (𝔗)
≤ 𝑑 |dp(P) | · (1 +∑𝑛

𝑗=1 edl⟨P|J𝑖 ,P|J𝑖 ⟩
(𝔗𝑖 ) ) by (33)

≤ 𝑑 |dp(P) | · (1 +∑𝑛
𝑗=1

(
edl⟨P|J𝑖 ,S|J𝑖 ⟩

(𝔗𝑖 ) + edl⟨P,P\S⟩ (𝔗)
)
) by (34)

= 𝑑 |dp(P) | · (1 + 𝑛 · edl⟨P,P\S⟩ (𝔗) +∑𝑛
𝑗=1 edl⟨P|J𝑖 ,S|J𝑖 ⟩

(𝔗𝑖 ) )
≤ 𝑑 |dp(P) | + 𝑑 |dp(P) | · 𝑛 · (edl⟨P,P\S⟩ (𝔗) +∑𝑛

𝑗=1 edl⟨P|J𝑖 ,S|J𝑖 ⟩
(𝔗𝑖 ) ) .

So the number of (at)- and (af)-steps with such an ADP 𝛼 is ≤
𝑑 |dp(P) | · 𝑛 ·𝑄 + 𝑑 |dp(P) |

. Since there are at most |P | such ADPs 𝛼 ,

the final constants 𝐵 and 𝐷 for (31) are 𝐵 = |P | · 𝑑 |dp(P) | · 𝑛 and

𝐷 = |P | · 𝑑 |dp(P) |
.

Now we show that (8) holds. For all 1 ≤ 𝑖 ≤ 𝑛 we have to show

𝜄 ⟨P |J𝑖 ,P|J𝑖 \S |J𝑖 ⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) .

Every P|J𝑖 -CT 𝔗 gives rise to a P-CT 𝔗′
by using the same ADPs

just with (possibly) more annotations. Hence, for every such 𝔗

we get edl⟨P |J𝑖 ,P|J𝑖 \S |J𝑖 ⟩ (𝔗) ≤ edl⟨P,P\S⟩ (𝔗′), and thus, we have

𝜄 ⟨P |J𝑖 ,P|J𝑖 \S |J𝑖 ⟩ ⊑ 𝜄 ⟨P,P\S⟩ . So (8) holds by well-formedness of𝔓,

which implies 𝜄 ⟨P,P\S⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) . ■

Theorem 4.12 (Reduction Pair Proc.). Let I : Σ♯ → N(V) be
aweaklymonotonic, multilinear polynomial interpretation. Let ⟨P,S⟩
be an ADP problem where P = P≥ ⊎ P> and P> ∩ S ≠ ∅ such that:
(1) For every ℓ→{𝑝1 :𝑟1, . . . , 𝑝𝑘 :𝑟𝑘 }true ∈ P: I(ℓ ) ≥∑

1≤ 𝑗≤𝑘 𝑝 𝑗 · I (♭(𝑟 𝑗 ) )
(2) For every ℓ→{𝑝1 :𝑟1, . . . , 𝑝𝑘 :𝑟𝑘 }𝑚 ∈ P≥ : I(ℓ♯ ) ≥∑

1≤ 𝑗≤𝑘 𝑝 𝑗 · I♯∑ (𝑟 𝑗 )
(3) For every ℓ→{𝑝1 : 𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 ∈ P> : I(ℓ♯ ) >∑

1≤ 𝑗≤𝑘 𝑝 𝑗 · I♯∑ (𝑟 𝑗 ) ,
where I♯∑ (𝑟 𝑗 ) =

∑
𝑡⊴♯𝑟 𝑗

I(𝑡♯ ) .

Then ProcRP (⟨P,S⟩) = (𝑐, ⟨P,S \ P>⟩) is sound, where the com-
plexity 𝑐 ∈ ℭ is determined as follows: If I is a CPI and for all
annotated symbols 𝑓 ♯ ∈ D♯ , the polynomial 𝐼

𝑓 ♯
has at most degree

𝑎, then 𝑐 = Pol𝑎 . If I is not a CPI, then 𝑐 = Exp if all constructors are
interpreted by linear polynomials, and otherwise 𝑐 = 2-Exp.

Proof. Let I♯

0
behave exactly as I♯∑ but in addition, it maps

every variable to 0. Moreover, let poloC : N → N ∪ {𝜔} be the
function that maps 𝑛 to the maximal interpretation of any basic

term of size ≤ 𝑛 which is annotated at the root. Thus, poloC(𝑛) =
sup{I♯

0
(𝑡♯) | 𝑡 ∈ TB and |𝑡 | ≤ 𝑛}.

As in [36], the conditions (1), (2), (3) from Thm. 4.12 can be lifted

to rewrite steps with

i
↩−→P instead of just rules and, therefore, to

edges of a CT. For each ADP 𝛼 = ℓ → {𝑝1 : 𝑟 𝑗 , . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 ∈ P>

we can find an 𝜀𝛼 > 0 such that I(ℓ♯) ≥ 𝜀𝛼 +∑
1≤ 𝑗≤𝑘 𝑝 𝑗 · I♯∑ (𝑟 𝑗 ).

Let 𝜀 = min{𝜀𝛼 | 𝛼 ∈ P>} be the smallest such number. After the

lifting, we get:

(1) For every 𝑠
i
↩−→P 𝜇 with (nt) or (nf), we have

I♯∑ (𝑠) ≥ ∑
1≤ 𝑗≤𝑘 𝑝 𝑗 · I♯∑ (𝑡)

(2) For every 𝑠
i
↩−→P 𝜇 with (at) or (af) and an ADP from P≥ ,

we have

I♯∑ (𝑠) ≥ ∑
1≤ 𝑗≤𝑘 𝑝 𝑗 · I♯∑ (𝑡)

(3) For every 𝑠
i
↩−→P 𝜇 with (at) or (af) and an ADP from P> ,

we have

I♯∑ (𝑠) ≥ 𝜀 +∑
1≤ 𝑗≤𝑘 𝑝 𝑗 · I♯∑ (𝑡)

We only have to prove that the complexity of P when count-

ing only P>-rules is bounded by 𝜄poloC, i.e, 𝜄 ⟨P,P> ⟩ ⊑ 𝜄poloC. Then,

𝜄poloC ⊑ 𝑐 follows by the same reasoning that was used in Sect. A.1

to find upper bounds on the polynomial interpretation of terms of

size 𝑛. Instead of basic terms, here we only need to consider terms

that have an annotation at the root, and constructor terms as proper

subterms.

Afterwards, we can conclude that (7) holds, i.e.,

𝜄 ⟨P,S⟩ ⊑ 𝑐 ⊕ 𝜄 ⟨P,S\P> ⟩,

because

𝜄 ⟨P,S⟩

= 𝜄 ⟨P,S∩P> ⟩ ⊕ 𝜄 ⟨P,S\P> ⟩

⊑ 𝜄 ⟨P,P> ⟩ ⊕ 𝜄 ⟨P,S\P> ⟩

⊑ 𝑐 ⊕ 𝜄 ⟨P,S\P> ⟩

Similarly, one can also conclude that (8) holds. Let𝔓 be a well-

formed proof tree with 𝐿A (𝑣) = ⟨P,S⟩, let 𝑣1, . . . , 𝑣𝑘 = 𝑣 be the

path from the root node 𝑣1 to 𝑣 , and let 𝑐 (𝑣1,...,𝑣𝑘 ) = 𝐿C (𝑣1) ⊕ ... ⊕
𝐿C (𝑣𝑘−1). Then we have

𝜄 ⟨P,P\(S\P> ) ⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) ⊕ 𝑐

because 𝜄 ⟨P,P\(S\P> ) ⟩ ⊑ 𝜄 ⟨P,(P\S)∪P> ⟩ and

𝜄 ⟨P,(P\S)∪P> ⟩ = 𝜄 ⟨P,P\S⟩ ⊕ 𝜄 ⟨P,P> ⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) ⊕ 𝑐

So it remains to show that 𝜄 ⟨P,P> ⟩ ⊑ 𝜄poloC holds. Consider a

basic term 𝑡 and a P-CT 𝔗 with 𝑡♯ at the root. We want to show

that up to a factor, I♯

0
(𝑡♯) is a bound on the expected derivation

length of 𝔗.

We have I♯

0
(𝑡♯) as the initial value at the root. Whenever we

perform a rewrite step with (nt) or (nf) or with an ADP from P≥ ,
we weakly decrease the value in expectation. And whenever we

perform a rewrite step with (at) or (af) and an ADP from P> at a

node 𝑣 , we strictly decrease the value by at least 𝜀 ·𝑝𝑣 in expectation.
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This behavior is illustrated in Fig. 7. Since the value is bounded

from below by 0, we get:

I♯

0
(𝑡♯) −

∑︁
𝑣∈𝑉 \Leaf𝔗

∑︁
P(𝑣) ∈P>×{ (at),(af ) }

𝜀 · 𝑝𝑣 ≥ 0

⇐⇒
∑︁

𝑣∈𝑉 \Leaf𝔗

∑︁
P(𝑣) ∈P>×{ (at),(af ) }

𝜀 · 𝑝𝑣 ≤ I♯

0
(𝑡♯) (35)

Therefore, we get:

𝜀 · edl⟨P,P> ⟩ (𝔗)

=
∑︁

𝑣∈𝑉 \Leaf𝔗

∑︁
P(𝑣) ∈P>×{ (at),(af ) }

𝜀 · 𝑝𝑣 (definition of edl)

≤ I♯

0
(𝑡♯) (with (35))

and therefore, edl⟨P,P> ⟩ (𝔗) ≤ 1/𝜀 ·I♯

0
(𝑡♯) and thus, 𝜄 ⟨P,P> ⟩ ⊑ 𝜄poloC.

■

1 I♯

0
(𝑡♯ )

(P>, (at) )

𝑝1 I♯

0
(𝑡1 )

(P>, (at) )
𝑝2 I♯

0
(𝑡2 )

(P≥ , (at) )

. . . . . . . . . . . .

E(I♯

0
(𝑡♯ ) ) = I♯

0
(𝑡♯ )

> 𝜀 · 1

E(I♯

0
({𝑝1 : 𝑡1, 𝑝2 : 𝑡2}) )

= 𝑝1 · I♯

0
(𝑡1 ) + 𝑝2 · I♯

0
(𝑡2 )

> 𝜀 · 𝑝1
. . .

Figure 7: Expected Decrease of I♯

0
in a Chain Tree.

Theorem 4.14 (Knowledge Propagation Proc. ). Let ⟨P,S⟩
be an ADP problem, let 𝛼 ∈ S and Pre(𝛼) ∩ S = ∅, where Pre(𝛼)
consists of all ADPs 𝛽 ∈ P such that there is an edge from some DP
in dp

⊥ (𝛽) to some DP in dp
⊥ (𝛼) in the P-dependency graph. Then

the following processor is sound:

ProcKP (⟨P,S⟩) = (Pol0, ⟨P,S \ {𝛼}⟩)

Proof. Let𝔓 be a well-formed proof tree with 𝐿A (𝑣) = ⟨P,S⟩,
let 𝑣1, . . . , 𝑣𝑘 = 𝑣 be the path from the root node 𝑣1 to 𝑣 , and let

𝑐 (𝑣1,...,𝑣𝑘 ) = 𝐿C (𝑣1) ⊕ ... ⊕ 𝐿C (𝑣𝑘−1).
We first show that (7) holds, i.e.,

𝜄 ⟨P,S⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) ⊕ Pol0 ⊕𝜄 ⟨P,S\{𝛼 }⟩
Let 𝔗 = (𝑉 , 𝐸, 𝐿) be a P-CT. Let 𝑑 be the maximal number of

annotated symbols in any term on a right-hand side of an ADP

from P. Recall that

edl⟨P,{𝛼 }⟩ (𝔗) ≤ 1 +∑
𝑣∈𝑉 \Leaf𝔗 , P(𝑣) ∈Pre(𝛼 )×{(at),(af)} 𝑑 · 𝑝𝑣

= 1 + 𝑑 · edl⟨P,Pre(𝛼 ) ⟩ (𝔗),
which implies erc⟨P,{𝛼 }⟩ (𝑛) ≤ 1 + 𝑑 · erc⟨P,Pre(𝛼 ) ⟩ (𝑛) for all 𝑛 ∈ N
and thus, 𝜄 ⟨P,{𝛼 }⟩ ⊑ 𝜄 ⟨P,Pre(𝛼 ) ⟩ . Hence, (7) holds, because of well-
formedness of𝔓, i.e.,

𝜄 ⟨P,S⟩ = 𝜄 ⟨P,S\{𝛼 }⟩ ⊕ 𝜄 ⟨P,{𝛼 }⟩ ⊑ 𝜄 ⟨P,S\{𝛼 }⟩ ⊕ 𝜄 ⟨P,Pre(𝛼 ) ⟩

⊑ 𝜄 ⟨P,S\{𝛼 }⟩ ⊕ 𝜄 ⟨P,P\S⟩ ⊑ 𝜄 ⟨P,S\{𝛼 }⟩ ⊕ 𝑐 (𝑣1,...,𝑣𝑘 )

Now we show (8), i.e.,

𝜄 ⟨P,P\(S\{𝛼 }) ⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) ⊕ Pol0

This holds again because𝔓 is well formed:

𝜄 ⟨P,P\(S\{𝛼 }) ⟩ = 𝜄 ⟨P,(P\S)∪{𝛼 }⟩ = 𝜄 ⟨P,P\S⟩ ⊕ 𝜄 ⟨P,{𝛼 }⟩

⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) ⊕ 𝑐 (𝑣1,...,𝑣𝑘 ) = 𝑐 (𝑣1,...,𝑣𝑘 )

■

Next, we prove the soundness of probability removal proces-

sor. Here, we follow the notation of [53] for the non-probabilistic

dependency tuple framework.

In [53], the runtime complexity for a DT problem (P,S,K,R) is
defined via ⟨P,R⟩-DT chain trees. Nodes of these trees are labeled
by pairs (ℓ♯ → [𝑡♯

1
, . . . , 𝑡

♯
𝑛], 𝜎) of a DT and a substitution such

that ℓ♯𝜎 ∈ NFR , and if a node (ℓ♯ → [𝑡♯
1
, . . . , 𝑡

♯
𝑛], 𝜎) has children

(ℓ♯
1
→ . . . , 𝛿1), . . . , (ℓ♯𝑘 → . . . , 𝛿𝑘 ), then there are pairwise different

𝑖1, . . . , 𝑖𝑘 ∈ {1, . . . , 𝑛} such that 𝑡♯
𝑖 𝑗
𝜎 i→∗

R ℓ
♯

𝑗
𝛿 𝑗 for all 1 ≤ 𝑗 ≤ 𝑘 .6 The

S-derivation length dl⟨P,S,R⟩ (𝔗) of a ⟨P,R⟩-DT chain tree 𝔗 is the

number of its nodes labeled by DTs from S. The derivation height
of a term 𝑡♯ w.r.t. ⟨P,S,R⟩ is the supremum over all S-derivation
lengths of all ⟨P,R⟩-DT chain trees starting with 𝑡♯ , i.e.,

dh⟨P,S,R⟩ (𝑡♯ ) =
sup{dl⟨P,S,R⟩ (𝔗) | 𝔗 is a ⟨P, R⟩-DT chain tree starting with 𝑡♯ } .

Finally, the runtime complexity function of ⟨P,S,R⟩ is defined in

a similar way as before

rc⟨P,S,R⟩ (𝑛) = sup{dh⟨P,S,R⟩ (𝑡♯) | 𝑡 ∈ TBR , |𝑡 | ≤ 𝑛},
and its runtime complexity 𝜄 ⟨P,S,R⟩ is 𝜄 (rc⟨P,S,R⟩).

As mentioned before, in the non-probabilistic DT framework

one has two components S and K for those DTs that we still need

to count and for those DTs for which we already have a complexity

bound on how often this DT can occur in a ⟨P,R⟩-DT chain tree,

respectively. The overall complexity of a DT problem (P,S,K,R)
is 𝜄 (P,S,K,R) = 𝜄 ⟨P,S,R⟩ ⊖ 𝜄 ⟨P,K,R⟩ .

7
Here, 𝑐 ⊖ 𝑑 = 𝑐 if 𝑑 ⊏ 𝑐 and

𝑐⊖𝑑 = Pol0 otherwise (so, e.g., Pol2 ⊖ Pol1 = Pol2 and Pol1 ⊖ Pol2 =

Pol0)

Theorem 4.16 (Probability Removal Processor). Let ⟨P,S⟩
be an ADP problem where every ADP in P has the form ℓ → {1 : 𝑟 }𝑚 .
Let dt(ℓ → {1 : 𝑟 }𝑚) = ℓ♯ → [𝑡♯

1
, . . . , 𝑡

♯
𝑛] if {𝑡 | 𝑡 ⊴♯ 𝑟 } = {𝑡1, . . . ,

𝑡𝑛}, and let dt(P) = {dt(𝛼) | 𝛼 ∈ P}. Then the expected runtime
complexity of ⟨P,S⟩ is equal to the runtime complexity of the non-
probabilistic DT problem 𝛽 = (dt(P), dt(S), dt(P \ S), np(P)). So
the processor ProcPR (⟨P,S⟩) = (𝑐,∅) is sound if the DT framework
returns 𝑐 as an upper bound on the runtime complexity of 𝛽 .

Proof. First, every P-CT 𝔗 gives rise to a ⟨dt(P), np(P)⟩-DT
chain tree𝔗′

such that edh⟨P,𝑋 ⟩ (𝔗) = dh⟨dt(P),dt(𝑋 ),np(P) ⟩ (𝔗′) for
every 𝑋 ⊆ P, and vice versa. To see this, note that every P-CT is a

single (not necessarily finite) path, due to the trivial probabilities in

its rules. Moreover, the DTs 𝛼 in𝔗′
correspond to those ADPs 𝛽 that

are used at annotated subterms, i.e., with Case (at) or (af), and we

6
So the branching in ⟨P, R⟩-DT chain trees is not due to probabilities but due to the

right-hand sides of DTs containing several terms that can be evaluated.

7
We do not need such a ⊖-operation due to our notion of well-formed proof trees that

did not exist in [53].
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have 𝛼 = dt(𝛽). The substitution is the corresponding substitution

used for the rewrite step at this node.

To be precise, if we have 𝑡
i
↩−→P {1 : 𝑠} at the root of 𝔗, where

we use an ADP 𝛼 = ℓ → {1 : 𝑟 }𝑚 ∈ P at position 𝜋 with the

substitution 𝜎 such that ♭(𝑡 |𝜋 ) = ℓ𝜎 ∈ ANFP , then we start with

(dt(𝛼), 𝜎) at the root of 𝔗′
. Let dt(𝛼) = ℓ♯ → [𝑟 ♯

1
, . . . , 𝑟

♯
𝑛]. If we

eventually rewrite at the subterm corresponding to some 𝑟
♯

𝑗
in 𝔗

with an ADP 𝛼 ′ = ℓ ′ → {1 : 𝑟 ′}𝑚′ ∈ P and the substitution 𝜎 ′

and this subterm still contains its annotation at the root, then we

must have 𝑟
♯

𝑗
𝜎 i→np(P) ℓ

′♯𝜎 ′
. Hence, we can create a child node of

(dt(𝛼), 𝜎) labeled by (dt(𝛼 ′), 𝜎 ′). We can construct the whole tree

𝔗′
inductively. Note that whenever we perform a rewrite step at

an annotated position in 𝔗, we create a corresponding node in 𝔗′
,

hence we have edh⟨P,𝑋 ⟩ (𝔗) = dh⟨dt(P),dt(𝑋 ),np(P) ⟩ (𝔗′).
For the converse, i.e., to get from a ⟨dt(P), np(P)⟩-DT chain tree

𝔗′
to the corresponding P-CT 𝔗, we simply perform all rewrite

steps with R in 𝔗 that are omitted in 𝔗′
. To be precise, if we have

(dt(𝛼), 𝜎) at the root of 𝔗′
for some ADP 𝛼 = ℓ → {1 : 𝑟 }𝑚 ∈ P,

then we can perform the rewrite step ℓ♯𝜎
i
↩−→P {1 : 𝑟𝜎} at the

root of 𝔗. Let dt(𝛼) = ℓ♯ → [𝑟 ♯
1
, . . . , 𝑟

♯
𝑛]. If there is a child labeled

by (dt(𝛼 ′), 𝜎 ′) of the root in 𝔗′
, then we have 𝑟

♯

𝑗
𝜎 i→np(P) ℓ

′♯𝜎 ′

for some 1 ≤ 𝑗 ≤ 𝑛, where ℓ ′ is the left-hand side of 𝛼 ′
. We can

simply perform those rewrite steps in𝔗. Since np(P) only contains
rules resulting from ADPs with the flag 𝑚 = true, this does not
remove any annotations from subterms that are not in normal

form. Hence, we can do this iteratively for every such child. In this

way, we can create the whole tree 𝔗 inductively. Again, for every

node of the ⟨dt(P), np(P)⟩-DT chain tree, we perform a rewrite

step with Case (at) or (af) in the P-CT. Therefore, edh⟨P,𝑋 ⟩ (𝔗) =
dh⟨dt(P),dt(𝑋 ),np(P) ⟩ (𝔗′).

As this relation holds for arbitrary P-CTs and ⟨dt(P), np(P)⟩-
DT chain trees, we obtain 𝜄 ⟨P,𝑋 ⟩ = 𝜄 ⟨dt(P),dt(𝑋 ),np(P) ⟩ for every
𝑋 ⊆ P.

We can now conclude soundness: Let𝔓 be a well-formed proof

tree with 𝐿A (𝑣) = ⟨P,S⟩, let 𝑣1, . . . , 𝑣𝑘 = 𝑣 be the path from the

root node 𝑣1 to 𝑣 , and let 𝑐 (𝑣1,...,𝑣𝑘 ) = 𝐿C (𝑣1) ⊕ ... ⊕ 𝐿C (𝑣𝑘−1).
Since the resulting ADP problems are solved, we only have

to show (7). Let K = P \ S. If we have 𝜄 ⟨dt(P),dt(S),np(P) ⟩ ⊑
𝜄 ⟨dt(P),dt(K),np(P) ⟩ , then 𝜄 ⟨P,S⟩ ⊑ 𝜄 ⟨P,P\S⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) by well-

formedness of 𝔓, which proves that ProcPR (⟨P,S⟩) = (𝑐,∅) is
sound for every 𝑐 ∈ C.

Next, consider the case 𝜄 ⟨dt(P),dt(K),np(P) ⟩ ⊏ 𝜄 ⟨dt(P),dt(S),np(P) ⟩ .
This implies that 𝜄 (dt(P),dt(S),dt(K),np(P) ) = 𝜄 ⟨dt(P),dt(S),np(P) ⟩ ⊖
𝜄 ⟨dt(P),dt(K),np(P) ⟩ = 𝜄 ⟨dt(P),dt(S),np(P) ⟩ , and therefore, we have

𝜄 ⟨P,S⟩ = 𝜄 ⟨dt(P),dt(S),np(P) ⟩ = 𝜄 ⟨dt(P),dt(S),dt(K),np(P) ⟩ ⊑ 𝑐 , since 𝑐 is

returned by the DT framework as a bound on the runtime complex-

ity of ⟨dt(P), dt(S), dt(K), np(P)⟩. Again, this proves soundness
of a processor with ProcPR (⟨P,S⟩) = (𝑐,∅). ■

Theorem 4.17 (Rule Overlap Instantiation Processor). Let
⟨P,S⟩ be an ADP problem with P = P′ ⊎ {𝛼} for 𝛼 = ℓ −→ {𝑝1 :

𝑟1, . . . , 𝑝𝑘 : 𝑟𝑘 }𝑚 , let 1 ≤ 𝑗 ≤ 𝑘 , and let 𝑡 ⊴♯ 𝑟 𝑗 . Let 𝛿1, . . . , 𝛿𝑑 be all
narrowing substitutions of 𝑡 . Then ProcROI (⟨P,S⟩) = (Pol0, {⟨P′ ∪

𝑁, S̃⟩}) is sound, where
𝑁 = {ℓ𝛿𝑒 → {𝑝1 : 𝑟1𝛿𝑒 , . . . , 𝑝𝑘 : 𝑟𝑘𝛿𝑒 }𝑚 | 1 ≤ 𝑒 ≤ 𝑑 }

∪ {ℓ −→ {𝑝1 : ♯capt
1
(𝛿

1
,...,𝛿𝑑 ) (𝑟1 ), . . . , 𝑝𝑘 : ♯

capt𝑘 (𝛿
1
,...,𝛿𝑑 ) (𝑟𝑘 ) }𝑚}

S̃ =

{
(S \ {𝛼 }) ∪ 𝑁, if 𝛼 ∈ S
S, otherwise

Proof. We first show that (7) holds, i.e., we show

𝜄 ⟨P,S⟩ ⊑ 𝜄 ⟨P′∪𝑁,S̃⟩

Every P-CT 𝔗 gives rise to a (P′ ∪ 𝑁 )-CT 𝔗′
, since every rewrite

step with 𝛼 can also be done with a rule from 𝑁 . Moreover, if 𝛼 ∈ S,
then 𝑁 ⊆ S̃, so every rewrite step that counts for the expected

derivation length of 𝔗 w.r.t. ⟨P,S⟩ still counts for the expected
derivation length of 𝔗′

w.r.t. ⟨P′ ∪ 𝑁, S̃⟩. To be precise, we get

edl⟨P,S⟩ (𝔗) ≤ edl⟨P′∪𝑁,S̃⟩ (𝔗).8 As this holds for every P-CT, we

obtain 𝜄 ⟨P,S⟩ ⊑ 𝜄 ⟨P′∪𝑁,S̃⟩ , and (7) holds.

Now we explain the precise construction. Let 𝔗 = (𝑉 , 𝐸, 𝐿) be a
P-CT and let P′ = P′∪𝑁 . We will create an P′

-CT𝔗′ = (𝑉 , 𝐸, 𝐿′).
Asmentioned, the core idea of this construction is that every rewrite

step with 𝛼 can also be done with a rule from 𝑁 . If we use ℓ −→
{𝑝1 : ♯capt

1
(𝛿1,...,𝛿𝑑 ) (𝑟1), . . . , 𝑝𝑘 : ♯capt𝑘 (𝛿1,...,𝛿𝑑 ) (𝑟𝑘 )}

𝑚 ∈ 𝑁 , we may

create fewer annotations than we did when using the old ADP 𝛼 .

However, we will never rewrite at the position of the annotations

that got removed in the CT 𝔗, hence we can ignore them. We

construct the new labeling 𝐿′ for the P′
-CT 𝔗′

inductively such

that for all nodes 𝑥 ∈ 𝑉 \ Leaf with 𝑥𝐸 = {𝑦1, . . . , 𝑦𝑚} we have

𝑡 ′𝑥
i
↩−→

P′ {
𝑝𝑦

1

𝑝𝑥
: 𝑡 ′𝑦1 , . . . ,

𝑝𝑦𝑚
𝑝𝑥

: 𝑡 ′𝑦𝑚 }. Let 𝑋 ⊆ 𝑉 be the set of nodes

𝑥 where we have already defined the labeling 𝐿′ (𝑥). During our

construction, we ensure that the following property holds for all

𝑥 ∈ 𝑋 :

♭(𝑡𝑥 ) = ♭(𝑡 ′𝑥 ) ∧ PosD♯ (𝑡𝑥 ) ∩ PosD∧¬NFR (♭(𝑡𝑥 )) ⊆ PosD♯ (𝑡 ′𝑥 ). (36)

Thus, all annotations of root symbols of subterms that are not in

normal form in 𝑡𝑥 are still annotated in 𝑡 ′𝑥 .
For the construction, we start with the same term at the root.

Here, (36) obviously holds. As long as there is still an inner node

𝑥 ∈ 𝑋 such that its successors are not contained in 𝑋 , we do

the following. Let 𝑥𝐸 = {𝑦1, . . . , 𝑦𝑚} be the set of its successors.
We need to define the corresponding terms 𝑡 ′𝑦1 , . . . , 𝑡

′
𝑦𝑚

for the

nodes 𝑦1, . . . , 𝑦𝑚 . Since 𝑥 is not a leaf and 𝔗 is a P-CT, we have

𝑡𝑥
i
↩−→P { 𝑝𝑦1

𝑝𝑥
: 𝑡𝑦1 , . . . ,

𝑝𝑦𝑚
𝑝𝑥

: 𝑡𝑦𝑚 }. We have the following three

cases:

(A) If it is a step with

i
↩−→P using an ADP that is different from

𝛼 in 𝔗, then we perform a rewrite step with the same ADP,

the same redex, and the same substitution in 𝔗′
. Then, it is

easy to see that (36) for the resulting terms hold.

(B) If it is a step with

i
↩−→P using 𝛼 at a position 𝜋 ∉ PosD♯ (𝑡𝑥 )

in 𝔗, then we perform a rewrite step with the new ADP

ℓ −→ {𝑝1 : ♯capt
1
(𝛿1,...,𝛿𝑑 ) (𝑟1), . . . , 𝑝𝑘 : ♯capt𝑘 (𝛿1,...,𝛿𝑑 ) (𝑟𝑘 )}

𝑚
,

the same redex, same substitution, and same position in

𝔗′
. Since the new rule has the same underlying terms as

𝛼 , it is easy to see that (36) holds for the resulting terms.

Note that the rule that we use contains fewer annotations

8
Note that we only have “≤” and not “=” since we may add rules to S that would not

count before, but finding a tree of equal or greater expected derivation length suffices.
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than the original rule, but since 𝜋 ∉ PosD♯ (𝑡𝑥 ), we remove

all annotations from the rule during the application of the

rewrite step anyway.

(C) If it is a step with

i
↩−→P using 𝛼 at a position 𝜋 ∈ PosD♯ (𝑡𝑥 ) in

𝔗, then we look at the specific successors to find a substitu-

tion 𝛿 such that ℓ𝛿 −→ {𝑝1 : 𝑟1𝛿, . . . , 𝑝𝑘 : 𝑟𝑘𝛿}𝑚 ∈ 𝑁 or we de-

tect that we can use the ADP ℓ −→ {𝑝1 : ♯capt
1
(𝛿1,...,𝛿𝑑 ) (𝑟1), . . . ,

𝑝𝑘 : ♯capt𝑘 (𝛿1,...,𝛿𝑑 ) (𝑟𝑘 )}
𝑚

and perform a rewrite step with

this new ADP, at the same position in 𝔗′
.

It remains to consider Case (C) in detail. Here, we have 𝑡𝑥
i
↩−→P { 𝑝𝑦1

𝑝𝑥
:

𝑡𝑦1 , . . . ,
𝑝𝑦𝑘
𝑝𝑥

: 𝑡𝑦𝑘 } using the ADP 𝛼 , the position 𝜋 ∈ PosD♯ (𝑡𝑥 ),
and a substitution 𝜎 such that ♭(𝑡𝑥 |𝜋 ) = ℓ𝜎 ∈ ANFP .

We first consider the case where there is no successor 𝑣 of 𝑥

where an ADP is applied at an annotated position below or at 𝜋 , or

an ADP is applied on a position strictly above 𝜋 before reaching

such a node 𝑣 . Then, we can use ℓ −→ {𝑝1 : ♯capt
1
(𝛿1,...,𝛿𝑑 ) (𝑟1), . . . , 𝑝𝑘 :

♯capt𝑘 (𝛿1,...,𝛿𝑑 ) (𝑟𝑘 )}
𝑚
instead, because the annotations will never be

used, so they do not matter.

Otherwise, there exists a successor 𝑣 of𝑥 where anADP is applied

at an annotated position below or at 𝜋 , and no ADP is applied on a

position strictly above 𝜋 before. Let 𝑣1, . . . , 𝑣𝑛 be all (not necessarily

direct) successors that rewrite below position 𝜋 , or rewrite at posi-

tion 𝜋 , and on the path from 𝑥 to 𝑣 there is no other node with this

property, and no node that performs a rewrite step strictly above

𝜋 . Furthermore, let 𝑡1, . . . , 𝑡𝑛 be the used redexes and 𝜌1, . . . , 𝜌𝑛 be

the used substitutions.

• (C1) If none of the redexes 𝑡1, . . . , 𝑡𝑛 is captured by 𝑡 , then we
use ℓ −→ {𝑝1 : ♯capt

1
(𝛿1,...,𝛿𝑑 ) (𝑟1), . . . , 𝑝𝑘 : ♯capt𝑘 (𝛿1,...,𝛿𝑑 ) (𝑟𝑘 )}

𝑚

with the position 𝜋 ∈ PosD♯ (𝑡𝑥 ) ∩ PosD∧¬NFR (♭(𝑡𝑥 )) ⊆(𝐼𝐻 )
PosD♯ (𝑡 ′𝑥 ) and the substitution 𝜎 . Again, (36) is satisfied for

our resulting terms.

• (C2) If 𝑡 = 𝑡𝑖 for some 1 ≤ 𝑖 ≤ 𝑛, then we can find a

narrowing substitution 𝛿𝑒 of 𝑡 that is more general than 𝜎 ,

i.e., we have 𝛿𝑒𝛾 = 𝜎 . Now, we use the ADP ℓ𝛿𝑒 −→ {𝑝1 :

𝑟1𝛿𝑒 , . . . , 𝑝𝑘 : 𝑟𝑘𝛿𝑒 }𝑚 with the position 𝜋 ∈ PosD♯ (𝑡𝑥 ) ∩
PosD∧¬NFR (♭(𝑡𝑥 )) ⊆(𝐼𝐻 ) PosD♯ (𝑡 ′𝑥 ) and the substitution 𝛾

such that ♭(𝑡𝑥 |𝜋 ) = ℓ𝛿𝑒𝛾 = ℓ𝜎 ∈ ANFP . Again, (36) is satisfied
for our resulting terms.

• (C3) If 𝑡 ≠ 𝑡𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 but there is an 1 ≤ 𝑖 ≤ 𝑛 such

that 𝑡𝑖 is captured, then, since 𝑡𝑖 is captured, there exists a nar-

rowing substitution 𝛿𝑒 of 𝑡 that is more general than 𝜌𝑖 , i.e.,

there exists a substitution𝜅1 with 𝛿𝑒𝜅1 = 𝜌𝑖 , and since we use

𝜌𝑖 later on we additionally have that 𝜌𝑖 is more general than

𝜎 , i.e., there exists a substitution 𝜅2 with 𝜌𝑖𝜅2 = 𝜎 . Now, we

use the ADP ℓ𝛿𝑒 −→ {𝑝1 : 𝑟1𝛿𝑒 , . . . , 𝑝𝑘 : 𝑟𝑘𝛿𝑒 }𝑚 with the po-

sition 𝜋 ∈ PosD♯ (𝑡𝑥 ) ∩ PosD∧¬NFR (♭(𝑡𝑥 )) ⊆(𝐼𝐻 ) PosD♯ (𝑡 ′𝑥 )
and the substitution 𝜅1𝜅2 such that ♭(𝑡𝑥 |𝜋 ) = ℓ𝛿𝑒𝜅1𝜅2 = ℓ𝜎 ∈
ANFP . Again, (36) is satisfied for our resulting terms.

Now we show condition (8). Let𝔓 be a well-formed proof tree

with 𝐿A (𝑣) = ⟨P,S⟩, let 𝑣1, . . . , 𝑣𝑘 = 𝑣 be the path from the root

node 𝑣1 to 𝑣 , and let 𝑐 (𝑣1,...,𝑣𝑘 ) = 𝐿C (𝑣1) ⊕ ... ⊕ 𝐿C (𝑣𝑘−1). We have

𝜄 ⟨P′∪𝑁,(P′∪𝑁 )\S̃⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) ,

because every (P′ ∪𝑁 )-CT 𝔗 gives rise to a P-CT 𝔗′
with at least

the same (at)- and (af)-steps. We can replace each usage of an ADP

ℓ𝛿𝑒 −→ {𝑝1 : 𝑟1𝛿𝑒 , . . . , 𝑝𝑘 : 𝑟𝑘𝛿𝑒 }𝑚 with the more general ADP 𝛼 , and

each ADP ℓ −→ {𝑝1 : ♯capt
1
(𝛿1,...,𝛿𝑑 ) (𝑟1), . . . , 𝑝𝑘 : ♯capt𝑘 (𝛿1,...,𝛿𝑑 ) (𝑟𝑘 )}

𝑚

can be replaced by 𝛼 as well, leading to more annotations than

before.

If an (at)- or (af)-step is performedwith anADP 𝛽 ∈ (P′∪𝑁 )\S̃
in 𝔗, we have the following cases:

• If 𝛽 ∈ P′ \ S̃, and 𝛼 ∈ S, then
𝛽 ∈ P′ \ S̃ = P′ \ ((S \ {𝛼}) ∪ 𝑁 ) = P′ \ (S ∪ 𝑁 ) ⊆ P \ S

• If 𝛽 ∈ P′ \ S̃, and 𝛼 ∉ S, then
𝛽 ∈ P′ \ S̃ = P′ \ S ⊆ P \ S

• If 𝛽 ∈ 𝑁 \ S̃, then 𝛼 ∉ S, and we use 𝛼 in 𝔗′
.

In every case, if the step counts towards the expected derivation

length w.r.t. (P′ ∪ 𝑁 ) \ S̃ in 𝔗, it will count for the expected

derivation length w.r.t. P \ S in 𝔗′
as well. Therefore, we result

in edl⟨P′∪𝑁,(P′∪𝑁 )\S̃⟩ (𝔗) ≤ edl⟨P,P\S⟩ (𝔗). As this holds for every
(P′ ∪ 𝑁 )-CT, we get 𝜄 ⟨P′∪𝑁,(P′∪𝑁 )\S̃⟩ ⊑ 𝜄 ⟨P,P\S⟩ ⊑ 𝑐 (𝑣1,...,𝑣𝑘 ) , by

well-formedness of𝔓, and (8) holds. ■
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