A Complete Dependency Pair Framework for
Almost-Sure Innermost Termination of
Probabilistic Term Rewriting

Abstract. Recently, the well-known dependency pair (DP) framework was
adapted to a dependency tuple framework in order to prove almost-sure
innermost termination (1AST) of probabilistic term rewrite systems. While
this approach was incomplete, in this paper, we improve it into a complete
criterion for iAST by presenting a new, more elegant definition of DPs for
probabilistic term rewriting. Based on this, we extend the probabilistic
DP framework by new transformations. Our implementation in the tool
AProVE shows that they increase its power considerably.

1 Introduction

Termination of term rewrite systems (TRSs) is studied for decades and TRSs are
used for automated termination analysis of many programming languages. One of
the most powerful techniques implemented in essentially all current termination
tools for TRSs is the dependency pair (DP) framework [2, 15, 16, 22] which allows
modular proofs that apply different techniques in different sub-proofs.

In [8], term rewriting was extended to the probabilistic setting. Probabilistic
programs describe randomized algorithms and probability distributions, with ap-
plications in many areas. In the probabilistic setting, there are several notions of
“termination”. A program is almost-surely terminating (AST) if the probability of
termination is 1. A strictly stronger notion is positive AST (PAST), which requires
that the expected runtime is finite. While numerous techniques exist to prove
(P)AST of imperative programs on numbers (e.g., [1, 4, 9, 12, 19, 23-25, 31-34]),
there are only few automatic approaches for programs with complex non-tail re-
cursive structure [7, 10, 28]. The approaches that are also suitable for algorithms
on recursive data structures [6, 30, 38] are mostly specialized for specific data
structures and cannot easily be adjusted to other (possibly user-defined) ones, or
are not yet fully automated. In contrast, our goal is a fully automatic termination
analysis for (arbitrary) probabilistic TRSs (PTRSs).

Up to now, only two approaches for automatic termination analysis of PTRSs
were developed [3, 26]. In [3], orderings based on interpretations were adapted to
prove PAST. However, already for non-probabilistic TRSs such a direct application
of orderings is limited in power. To obtain a powerful approach, one should combine
such orderings in a modular way, as in the DP framework.

Indeed, in [26], the DP framework was adapted to the probabilistic setting
in order to prove innermost AST (iAST), i.e., AST for rewrite sequences which
follow the innermost evaluation strategy. However, in contrast to the DP framework
for ordinary TRSs, the probabilistic dependency tuple (DT) framework in [26] is
incomplete, i.e., there are PTRSs which are iAST but where this cannot be proved
with DTs. In this paper, we introduce a new concept of probabilistic DPs and

2 A Complete DP Framework for iAST of PTRS

a corresponding new rewrite relation. In this way, we obtain a novel complete
criterion for iAST via DPs while maintaining soundness for all processors that were
developed in the probabilistic DT framework of [26]. Moreover, our improvement
allows us to introduce additional more powerful “transformational” probabilistic
DP processors which were not possible in the framework of [26].

We briefly recapitulate the DP framework for non-probabilistic TRSs in Sect. 2.
Then, we present our novel ADPs (annotated dependency pairs) for probabilistic
TRSs in Sect. 3. In Sect. 4, we show how to adapt the processors from the framework
of [26] to our new probabilistic ADP framework. But in addition, our new framework
allows for the definition of new processors which transform ADPs. As an example,
in Sect. 5 we adapt the rewriting processor to the probabilistic setting, which
benefits from our new, more precise rewrite relation. The implementation of our
approach in the tool AProVE is evaluated in Sect. 6. We refer to App. A for all
proofs. In App. B we show how the other transformational processors of the DP
framework can also be adapted to the probabilistic setting. Finally, in App. C we
present selected examples from our new set of benchmarks.

2 The DP Framework

We assume familiarity with term rewriting [5] and recapitulate the DP framework
along with its core processors (see e.g., [2, 15, 16, 22] for more details). We regard
finite TRSs R over a finite signature X and let 7 (X, V) denote the set of terms
over X and a set of variables V. We decompose X = D W C such that f € D if
f =root(¢) for some rule £ — r € R. The symbols in D are called defined symbols.
For every f € D, we introduce a fresh annotated symbol f# of the same arity.!
To ease readability, we often write F instead of f#. Let D# denote the set of all
annotated symbols and X# = D# W X. For any term t = f(t1,...,t,) € T (X,V)
with f € D, let t# = f#(t,...,t,). For every rule £ — r and every subterm
t of r with defined root symbol, one obtains a dependency pair (DP) £# — t#.
DP(R) denotes the set of all dependency pairs of R. As an example, consider
Rex = {(1),(2)} with its dependency pairs DP(Rex) = {(3), (4)}.

f(s(x)) = c(f(g(2))) (1) F(s(x))—>F(g(x)) (3)
g(x) —=s(z) (2) F(s(x)) = G(z) (4)

The DP framework uses DP problems (P,R) where P is a set of DPs and
R is a TRS. A (possibly infinite) sequence tg, t1,ta, ... with ¢ i)pﬂg o i)% tiv1
for all ¢ is an (innermost) (P, R)-chain which represents subsequent “function
calls” in evaluations. Throughout the paper, we restrict ourselves to innermost
rewriting, because our adaption of dependency pairs to the probabilistic setting
relies on this evaluation strategy. Here, steps with L)p"]?, are called P-steps, where
L)'pjz is the restriction of —p to rewrite steps where the used redex is in NFg
(the set of normal forms w.r.t. R). Steps with %% are called R-steps and are used
to evaluate the arguments of an annotated function symbol. So an infinite chain
consists of an infinite number of P-steps with a finite number of R-steps between

! The symbols f# were called tuple symbols in the original DP framework [16] and also
in [26], as they represent the tuple of arguments of the original defined symbol f.

A Complete DP Framework for iAST of PTRSs 3

consecutive P-steps. For example, F(s(x)), F(s(z)), ... is an infinite (DP(Rex), Rex)-
chain, as F(s(z)) S pp(r.),r. F(8(2)) iﬁ;‘zex F(s(x)). A DP problem (P, R) is called
innermost terminating (iTerm) if there is no infinite innermost (P, R)-chain. The
main result on dependency pairs is the chain criterion which states that there is no
infinite sequence t; g ta —g ..., i.e., R is iTerm, iff (DP(R), R) is iTerm. The
key idea of the DP framework is a divide-and-conquer approach, which applies DP
processors to transform DP problems into simpler sub-problems. A DP processor
Proc has the form Proc(P,R) = {(P1,R1),...,(Pn,Rn)}, where P, Py,..., Py
are sets of DPs and R, Rq,...,R, are TRSs. A processor Proc is sound if (P,R)
is iTerm whenever (P;, R;) is iTerm for all 1 <14 < n. It is complete if (P;, R;) is
iTerm for all 1 <i < n whenever (P, R) is iTerm.

So given a TRS R, one starts with the initial DP problem (DP(R),R) and
applies sound (and preferably complete) DP processors repeatedly until all sub-
problems are “solved” (i.e., sound processors transform them to the empty set).
This gives a modular framework for termination proofs, as different techniques
can be used for different “sub-problems” (P;, R;). The following three theorems
recapitulate the three most important processors of the DP framework.

The (innermost) (P, R)-dependency graph is a control flow graph that indicates
which DPs can be used after each other in a chain. Its node set is P and there
is an edge from Zf& — t?& to @& — tf if there exist substitutions oy, 0y such that
tfkol %% Zfag and E’fbal,ffag € NFr. Any infinite (P, R)-chain corresponds to
an infinite path in the dependency graph, and since the graph is finite, this infinite
path must end in some strongly connected component (SCC).? Hence, it suffices to
consider the SCCs of this graph independently.

Theorem 1 (Dep. Graph Processor). For the SCCs Py, ..., Py, of the (P, R)-
dependency graph, Procpe(P, R) = {(P1,R), ..., (Pn,R)} is sound and complete.

Example 2 (Dependency Graph). Consider the TRS Reg={(5)} with DP(Reg) =
{(6),(7),(8)}. The (DP(Rsrg), Rerg)-dependency graph is on the right.

F(f(g(x))) = Fe(f(e(f(=)) ©) @ 1m
f(f(g(x))) = f(g(f(a(f(2)))) (5) F(f(g(z)))—F(g(f(z))) (7)

F(f(g(x))) — F(x) (8)

While the exact dependency graph is not computable in general, there are
several techniques to over-approximate it automatically, see, e.g., [2, 16, 22]. In our
example, Procpe(DP(Rg), Rerg) yields the DP problem ({(8)}, Rg)-

The next processor removes rules that cannot be used for right-hand sides of
dependency pairs when their variables are instantiated with normal forms.

Theorem 3 (Usable Rules Processor). Let R be a TRS. For every f € X#
let Rulesg(f) = {¢ — r € R | root({) = f}. For any t € T (X#,V), its us-
able rules Ug (t) are the smallest set such that Ur(z) = @ for all x € V and

2 Here, a set P’ of DPs is an SCC if it is a maximal cycle, i.e., it is a maximal set such
that for any ¢ — t¥ and ¢ — 7 in P’ there is a non-empty path from ¢ — t¥ to
(% — 7 which only traverses nodes from P’.

4 A Complete DP Framework for iAST of PTRS

Ur(f(t1,. .. tn)) = Rulesg(f) UUi, Ur(t;) U U reRrutes (1) UR (7). The us-
able rules for the DP problem (P,R) are U(P,R) = Ups_#cp Ur (t7). Then
Procgw (P, R) = {(P,U(P,R))} is sound but not complete.’

Procyr ({(8)}, Rfg) yields the problem ({(8)}, @), i.e., it removes all rules, be-
cause the right-hand side of (8) does not contain the defined symbol f.

A polynomial interpretation Pol is a XY-algebra which maps every function sym-
bol f € X to a polynomial fpo € N[V], see [29]. Pol(t) denotes the interpretation
of a term ¢ by the X-algebra Pol. An arithmetic inequation like Pol(¢;) > Pol(t2)
holds if it is true for all instantiations of its variables by natural numbers. The
reduction pair processor* allows us to use weakly monotonic polynomial interpre-
tations that do not have to depend on all of their arguments, i.e., z > y implies
froi(e.osxy..) > frol(-..,vy,...) for all f € £#. The processor requires that all
rules and DPs are weakly decreasing and it removes those DPs that are strictly
decreasing.

Theorem 4 (Reduction Pair Processor with Polynomial Interpretations).
Let Pol : T (E#, V) — N[V] be a weakly monotonic polynomial interpretation. Let
P = P> WP with P> # & such that:

(1) For every £ — r € R, we have Pol(¢) > Pol(r).
(2) For every (% — t# € P, we have Pol({#) > Pol(t#).
(3) For every (% — t# € P, we have Pol({#) > Pol(t#).

Then Procgp(P,R) = {(P>,R)} is sound and complete.

For ({(8)}, @), the reduction pair processor uses the polynomial interpretation
that maps f(z) to + 1 and both F(z) and g(z) to z, i.e., Procas ({(8)}, @) =
{(@, @)} As Procpg(@,...) = @ and all processors used are sound, this means
that there is no infinite innermost chain for the initial DP problem (DP(R#g), Rirg)
and thus, Ry is innermost terminating.

3 Probabilistic Annotated Dependency Pairs

In this section we present our novel adaption of DPs to the probabilistic setting. As
in [3, 8, 11, 26], the rules of a probabilistic TRS have finite multi-distributions on
the right-hand sides. A finite multi-distribution p on a set A # & is a finite multiset
of pairs (p: a), where 0 < p <1 is a probability and a € A, with Z(p:a)eﬂ p=1.
FDist(A) is the set of all finite multi-distributions on A. For p € FDist(A), its
support is the multiset Supp(u)={a | (p:a) € for some p}.

3 See [15] for a complete version of this processor. It extends DP problems by an additional
set to store the left-hand sides of all rules (including the non-usable ones) to determine
whether a rewrite step is innermost. We omit this here for readability.

4 In this paper, we only regard the reduction pair processor with polynomial interpreta-
tions, because for most other classical orderings it is not clear how to extend them to
probabilistic TRSs, where one has to consider “expected values of terms”.

A Complete DP Framework for iAST of PTRSs 5

A pair £ — p e T (X,V) x FDist(T (X,V)) such that £ ¢ V and V(r) C V({)
for every r € Supp(u) is a probabilistic rewrite rule. A probabilistic TRS (PTRS)
is a finite set of probabilistic rewrite rules. As an example, consider the PTRS
Rew with the rule g(x) —{Y/2: g(g(x)), /2 : x}, which corresponds to a symmetric
random walk. Let g2(z) abbreviate g(g(z)), etc.

A PTRS R induces a rewrite relation —r C T (X, V) x FDist(T (X,V)) where
s =g {p1:t1,...,pk : tg} if there is a position 7 of s, arule £ = {py : 71,..., Dk :
T} € R, and a substitution o such that s|, = o and t; = s[rjo], forall 1 < j <k.
We call s = g an innermost rewrite step (denoted s s p) if o € ANFg, where
ANFyr is the set of all terms in argument normal form w.r.t. R, i.e., all terms ¢
where every proper subterm of ¢ is in normal form w.r.t. R.

To track all possible rewrite sequences (up to non-determinism) with their
probabilities, we lift 3 to (innermost) rewrite sequence trees (RSTs). An (inner-
most) R-RST is a tree whose nodes v are labeled by pairs (p,, t,) of a probability
p, and a term t, such that the edge relation represents a probabilistic inner-
most rewrite step. More precisely, T = (V, E, L) is an (innermost) R-RST if
(1) (V,E) is a (possibly infinite) directed tree with nodes V # & and directed
edges E C V x V where vE = {w | (v,w) € E} is finite for every v € V,
(2) L : V — (0,1] x T (X,V) labels every node v by a probability p, and a
term ¢, where p, = 1 for the root v € V of the tree, and (3) for all v € V: if
vE = {wi,...,w,} # @, then t, {p;’ul Y AP p;;"‘ ¢ ta, }- For any innermost
R-RST T we define [T|rear = Y, crear Pv» Where Leaf is the set of T's leaves. An
RST % is innermost almost-surely terminating (1AST) if |¥|Leas = 1. Similarly, a
PTRS R is ¢AST if all innermost R-RSTs are iAST. While |T|Leasr = 1 for every
finite RST ¥, for infinite RSTs ¥ we may have |T|rear < 1, and even |T|rear = 0
if T has no leaf at all. This notion is equivalent to the notions of AST in [3, 20],
where one uses a lifting to multisets instead of trees. For example, the infinite

Rw-RST T on the side has |¥|Lear = 1. In fact,
Rew is 1AST, because |T|ieasr = 1 holds for all
innermost Rn,-RSTs . |1/2 | g2($)| [1/2]=]

As shown in [26], to adapt the DP framework
in order to prove iAST of PTRSs, one has to
regard all DPs resulting from the same rule at
once. Otherwise, one would not be able to distinguish between the DPs of the
TRS with the rule a — {1/2 : b,1/2 : c(a,a)} which is iAST and the rule a —
{/2:b,1/2: c(a,a,a)}, which is not iAST. For that reason, in the adaption of the
DP framework to PTRSs in [26], one constructs dependency tuples (DTs) whose
right-hand sides combine the right-hand sides of all dependency pairs resulting
from one rule. However, a drawback of this approach is that the resulting chain
criterion is not complete, i.e., it allows for chains that do not correspond to any
rewrite sequence of the original PTRS R.

d ~{
[vilet@] [va]e@]
4 N VAN

Ezample 5. Consider the PTRS Rincpr with the rules
a—{1:f(h(g),g)} (9) h(by) = {1:a} (11)
g — {1/2 : b1, 1/2 : bg} (10) f((E, bg) — {1 : a} (12)
and the Rincp-RST below. So a can be rewritten to the normal form f(h(bs), b1)

6 A Complete DP Framework for iAST of PTRS

with probability 1/4
and to the terms
f(a,b;) and a that
contain the redex a

f(h(g), b1) f(h(g), bs)
with a probability of

1/4 n 1/4 _ 1/2. I the | 1/a | f(hib1)7 b1) | | 1/41;;1(7h(b2)7 by) | | 1/4 | f(hib1)7 bs) | | 14 l f(hibQ)’ ba) |
term f(a, by), one can Fincrl [1/1]f(a,b2)] [/4]a]
T

rewrite the subterm A

a, and if that ends in a normal form, one can still rewrite the outer f which will
yield a again. So to over-approximate the probability of non-termination, one could
consider the term f(a,bs) as if one had two occurrences of a. Then this would
correspond to a random walk where the number of a symbols is decreased by 1
with probability 1/4, increased by 1 with probability /4, and kept the same with
probability /2. Such a random walk is AST, and since a similar observation holds
for all Rincpi-RSTS, Rincpi is 1AST (we will prove 1AST of Rinept with our new ADP
framework in Sect. 4 and 5).

f(h(g). 8)

In contrast, the DT framework from [20] fails on this example. As mentioned,
the right-hand sides of DTs combine the right-hand sides of all dependency pairs
resulting from one rule. So the right-hand side of the DT for (9) contains the
term comy(F(h(g),g),H(g), G, G), where comy is a special compound symbol of
arity 4. However, here it is no longer clear which occurrence of the annotated
symbol G corresponds to which occurrences of g. Therefore, when rewriting an
occurrence of G, in the “chains” of [26] one may also rewrite arbitrary occurrences
of g simultaneously. (For that reason, in [26] one also couples the DT together
with its original rule.) In particular, [26] also allows a simultaneous rewrite step of
all underlined symbols in com(F(h(g),g),H(g),G, G) even though the underlined
G cannot correspond to both underlined gs. As shown in Lemma 28 in App. A,
this leads to a chain that is not iAST and that does not correspond to any rewrite
sequence. To avoid this problem, one would have to keep track of the connections
between annotated symbols and the corresponding original subterms. However,
such an improvement would become very complicated in the formalization of [20].

Therefore, in contrast to [20], in our new notion of DPs, we annotate defined
symbols directly in the original rewrite rule instead of extracting annotated subterms
from its right-hand side. This makes the definition easier, more elegant, and more
readable, and allows us to solve the incompleteness problem of [20].

Definition 7 (Annotations). Let t € T (X#,V) be an annotated term and for
X' C X% let posy.(t) be all positions of t with symbols from X'. For a set of
positions ¢ C posp px(t), let #4(t) be the variant of t where the symbols at
positions from @ in t are annotated and all other annotations are removed. Thus,
pospx (#a(t)) = @, and #4(t) removes all annotations from t, where we often
write b(t) instead of #x(t). We extend b to multi-distributions, rules, and sets of
rules by removing the annotations of all occurring terms. We write #p(t) instead
of #posp(t)(t) to annotate all defined symbols in t. Moreover, let bl (t) result from
removing all annotations from t that are strictly above the position w. Finally, we
write t Ay s if t s (i.e., t is a subterm of s) and root(t) € D¥.

A Complete DP Framework for iAST of PTRSs 7

Ezample 8. So if g € D, then we have #11(g(g(7))) = #{13(G(G(x))) = g(G(x)),
#n(8(g(®))) = #(c13(8(8(2))) = G(G(x)), and H(G(G(x))) = g(g(x)). Moreover,
b1(G(G(x))) = g(G(x)) and G(x) Iy g(G(x)).

Next, we define the canonical annotated dependency pairs for a given PTRS.

Definition 9 (Canonical Annotated Dependency Pairs). For a rule { —
w=A{p1:71,...,Dk : Tk}, its canonical annotated dependency pair (ADP) is

DP(t—pn) = L= {p1:#p(r1),. ..ok : #p(rx)}"™
The canonical ADPs of @ PTRS R are DP(R) ={DP(l — u) | { — p € R}.

Ezample 10. For R,,, the canonical ADP for g(z) — {2 : g(g(z))),Y2 : z} is
g(x) = {1/2: G(G(z)), I/2 : x}"™ instead of the (complicated) DT from [26]:

DT (Rew) = {(G(2), g(x)) — {V/2: (com2(G(g(2)), G(x)),g*(x)), /2 : (comp,)} }

So the left-hand side of an ADP is just the left-hand side of the original rule.
The right-hand side of the ADP results from the right-hand side of the original
rule by replacing all f € D with f#. Moreover, every ADP has a flag m € {true,
false} to indicate whether this ADP may be used for an R-step before a P-step at
a position above. (This flag will later be modified by our usable rules processor.)
In general, we work with the following rewrite systems in our framework.

Definition 11 (Annotated Dependency Pairs, f—>73) An ADP has the form
= A{p1:ri,...,pr:rpt™, where £ € T (X,V) with £ ¢ V, m € {true,false}, and
for all1 < j <k we have rj €T (X%,V) with V(r;) € V({).

Let P be a finite set of ADPs (a so-called ADP problem). An annotated term
s € T(E#,V) rewrites with P to u = {p1 : t1,...,pk : tx} (denoted s ti—>7, 7y,

if there is a rule £ — {p1 : r1,...,pk : Tk}™ € P, a substitution o, and a ™ €
pospup# (8) such that b(s|) = o € ANFp, and for all 1 < j < k we have

ti= s[rjols if m € pospx(s) and m = true (PR)

t; =b1(s[rjolx if T € pospx(s) and m = false (P)

ti = sb(rj)olx ifm € pospx(s) and m = true (R)

t; =bL(s[p(rj)ols) if * € pospx(s) and m = false (IRR)

To highlight the position m of the redex, we also write s fi—>7377r t. Again, ANFp is the
set of all annotated terms in argument normal form w.r.t. P.

Rewriting with P can be seen as ordinary term rewriting while considering
and modifying annotations. In the ADP framework, we represent all DPs resulting
from a rule as well as the original rule by just one ADP. So for example, the
ADP g(x) — {1/2: G(G(z)), /2 : x}'e for the rule g(x) — {1/2: g(g(x)), /2 : x}
represents both DPs resulting from the two occurrences of g on the right-hand side,
and the rule itself (by simply disregarding all annotations of the ADP).

As in the classical DP framework, our goal is to track specific reduction sequences
where (1) the root symbols of the terms are annotated, (2) there are P-steps where
a DP is applied at the root position, and (3) between two P-steps there can be
several R-steps where rules are applied below the root.

A step of the form (PR) at position 7 in Def. 11 can represent either a P- or

8 A Complete DP Framework for iAST of PTRS

an R-step. So all annotations are kept during this step except for annotations of
the subterms that correspond to variables of the applied rule. These subterms are
always in normal form due to the innermost evaluation strategy and we erase their
annotations in order to handle rewriting with non-left-linear rules correctly. If one
later considers an annotated symbol at a position above 7, then this (PR)-step has
played the role of an R-step, and otherwise it has played the role of a P-step. As an
example, for a PTRS Reyp with the rules g(x,z) — {1 :f(x)} and f(a) — {1 : f(b)},
we have the canonical ADPs g(z,z) — {1: F(z)}™® and f(a) — {1: F(b)}'™®, and
we can rewrite G(F(b),f(b)) (i_>D79(72exz) {1: F(f(b))} using the first ADP. Here, we
have m = ¢, b(s|.) = g(f(b),f(b)) = o where o instantiates x with the normal form
f(b), and r; = F(x).

A step of the form (R) rewrites at the position of a non-annotated defined symbol.
So this represents an R-step and thus, we remove all annotations from the right-
hand side 7;. As an example, we have G(F(b),f(a)) <i—>D7,(ReX2) {1: G(F(b),f(b))}
using the ADP f(a) — {1 : F(b)}te.

A step of the form (P) represents a P-step. Thus, we remove all annotations
above the position 7, because no P-steps are possible above 7. So if P contains
f(a) — {1: F(b)}®"*e then G(F(b),F(a)) ci—>73 {1: g(F(b),F(b))}.

Finally, a step of the form (IRR) is an R-step that is irrelevant for proving
iAST, because due to the flag m = false, afterwards there cannot be a P-step at a
position above. For example, if P again contains f(a) — {1 : F(b)}™*¢, then we have
G(F(b),f(a)) <> {1 :g(F(b),f(b))}. Steps of the form (IRR) are needed to ensure
that all rewrite steps with R are also possible with the ADP problems P that
result from DP(R) when applying ADP processors. These processors only modify
the annotations, but keep the rest of the rules unchanged. So for all these ADP
problems P, we have R = b(P) and b(t) € ANFr iff ¢t € ANFp for all t € T (X%#,V),
i.e., the innermost evaluation strategy is not affected by the application of ADP
processors. This is different from the classical DP framework, where the usable
rules processor reduces the number of rules. This may result in new redexes that
are allowed for innermost rewriting. Thus, the usable rules processor in our new
ADP framework is complete, whereas in [15], one has to extend DP problems by
an additional component in order to achieve completeness of this processor (see
Footnote 3).

Now, s =g {p1 : t1,...,pr : i} essentially’ implies #p(s) <i—>DP(R) {p1 :
#p(t1),. ..,k : #p(tr)}, and we got rid of any ambiguities in the rewrite relation,
that led to incompleteness in [26]. While our ADPs are much simpler than the DTs
of [26], due to their annotations they still contain all information that is needed to
define the required DP processors.

Instead of chains of DPs, in the probabilistic setting one works with chain trees
[26], where P- and R-steps are indicated by P- and R-nodes in the tree. Chain

® We have #p(s) i;>D7,(R) {p1 :t1,...,pr : t} where t; and #p(t;) are the same up to
some annotations of subterms that are DP(R)-normal forms. The reason is that as
mentioned above, annotations of the subterms (in normal form) that correspond to
variables of the rule are erased. So for example, rewriting G(F(b), F(b)) with DP(Rex2)
yields {1 : F(f(b))} and not {1 : F(F(b))}.

A Complete DP Framework for iAST of PTRSs 9

trees are defined analogously to RSTs, but the crucial requirement is that every
infinite path of the tree must contain infinitely many steps of the forms (PR) or
(P). Thus, in our setting € = (V, E, L, P) is a P-chain tree (CT) if

1. (V,E) is a (possibly infinite) directed tree with nodes V # @ and directed
edges E CV x V where vE = {w | (v,w) € E} is finite for every v € V.

2. L:V — (0,1 x T (£#,V) labels every node v by a probability p, and a term
t,. For the root v € V of the tree, we have p, = 1.

3. P C V\Leaf (where Leaf are all leaves) is a subset of the inner nodes to indicate
whether we use (PR) or (P) for the next rewrite step. R =V \ (Leaf U P) are
all inner nodes that are not in P, i.e., where we rewrite using (R) or (IRR).

4. For all v € P: if vE = {wy,...,w;}, then t, <>p {% : twl,...,pp% S tw, b
using Case (PR) or (P).

5. For all v € R: if vE = {wy,...,wi}, then t, <, {pp% : twl,...,% St b
using Case (R) or (IRR).

6. Every infinite path in ¥ contains infinitely many nodes from P.

Let |T|iear = D ycrear Po- We define that P is iAST if [T|iear = 1 for all P-CTs T.
So Conditions 1-5 ensure that the chain tree corresponds to an RST and Condition
6 requires that one may only use finitely many R-steps before the next P-step.
This yields a chain criterion as in the non-probabilistic setting, where (in contrast
to the chain criterion of [26]) we again have “iff” instead of “if”.

Theorem 12 (Chain Criterion). R is iAST iff DP(R) is iAST.

Since ADPs only add annotations to already existing rules, our chain criterion
is complete (“only if”), because every DP(R)-CT can be turned into an R-RST
by omitting all annotations. To prove soundness (“if”), one has to show that every
R-RST ¥ can be simulated by a DP(R)-CT. As mentioned, all proofs can be found
in App. A.

4 The ADP Framework

The new (probabilistic) ADP framework again uses a divide-and-conquer approach
which applies ADP processors to transform an ADP problem into simpler sub-
problems. An ADP processor Proc has the form Proc(P) = {P1,..., Py}, where
P,Pi,..., P, are ADP problems. Proc is sound if P is iAST whenever P; is iAST
for all 1 <7 < n. It is complete if P; is iAST for all 1 < i < n whenever P is iAST.
Given a PTRS R, one starts with the canonical ADP problem DP(R) and applies
sound (and preferably complete) ADP processors repeatedly until all ADPs in all
sub-problems contain no annotations anymore. Such an ADP problem is trivially
iAST. The framework again allows for modular termination proofs, since different
techniques can be applied on each sub-problem P;.

We now adapt the processors from [26] to our new framework. The (innermost)
P-dependency graph is a control flow graph between ADPs from P, indicating
whether an ADP « may lead to an application of another ADP ' on an annotated
subterm introduced by «. This possibility is not related to the probabilities. Hence,

10 A Complete DP Framework for iAST of PTRS

we can use the non-probabilistic variant np(P) = {¢ — b(r;) | € = {p1 :71,..., Pk :
rp e € P,1 < j < k}, which is an ordinary TRS over the signature X. Note that
for np(P) we only need to consider rules with the flag true, since only such rules
can be used before a P-step at a position above.

Definition 13 (Dep. Graph). The P-dependency graph has the nodes P and
there is an edge from €1 — {p1 : ri,...,pr : r}™ to ba — ... if there are
substitutions 01,09 and a t Qg r; for some 1 < j <k such that -y (t)o i—>;‘1p(73)
#cy(l2)aa and both £101 and b0 are in ANFp.

So there is an edge from an ADP « to an ADP o’ if after a step of the form
(PR) or (P) with « at the root of the term there may eventually come another step
of the form (PR) or (P) with «’. Hence, for every path in a P-CT from a P-node
where an annotated subterm f#(...) is introduced to the next P-node where the
subterm f#(...) at this position is rewritten, there is a corresponding edge in
the P-dependency graph. Since every infinite path in a CT contains infinitely
many nodes from P, every such path traverses a cycle of the dependency graph
infinitely often. Thus, it suffices to consider the SCCs of the dependency graph
separately. In our framework, this means that we remove the annotations from
all rules except those that are in the SCC that we want to analyze. As in [26], to
automate the following two processors, the same over-approximation techniques as
for the non-probabilistic dependency graph can be used.

Theorem 14 (Prob. Dep. Graph Processor). For the SCCs Py, ..., Py of the
P-dependency graph, Procpe(P)={P1Ub(P\ P1),...., Pn Ub(P\ Pn)} @s sound and
complete.

Ezample 15. Consider the PTRS Rincpl from Ex. 5 with the canonical ADPs
a— {1:F(H(G),G)}e (13) h(by) — {1 : A}t (15)
g — {2:by,1/2: ba}t™ (14) f(xz,bg) — {1 : A}tme (16)

The DP(Rincpi)-dependency graph can be seen on the right. As (14) [5)] [(16)
is the only ADP not contained in the SCC, we can remove all of

its annotations. However, since (14) already does not contain any
annotation, here the dependency graph processor does not change DP(Rincpl)-

To remove the annotations of non-usable terms like G in (13) that lead out of
the SCCs of the dependency graph, one can apply the usable terms processor.

Theorem 16 (Usable Terms Processor). Let ¢, € T (X,V) and P be an
ADP problem. We call t € T (X#,V) with root(t) € D¥ usable w.r.t. {; and
P if there are substitutions o1,02 and an o — us € P where us contains an
annotated symbol, such that #.(t)o; i—>:p(7,) #:(€2)oo and both L1071 and lyoo are
in ANFp. Let by p(s) be the variant of s where all annotations of those subterms
of s are removed that are not usable w.r.t. £ and P. The transformation that
removes all annotations from non-usable terms in the right-hand sides of ADPs
is Tor(P)={—={p1 : be,p(r1), ...,k : e p(ri) }™ [€= {p1 i1, pi s T} ™ EP}
Then Procyr(P) = {Tur(P)} is sound and complete.

A Complete DP Framework for iAST of PTRSs 11

So for DP(Rincpi), Procyr replaces (13) by a — {1: F(H(g),g)}™e (13).

Again, the idea of the usable rules processor is to find rules that cannot be
used below an annotation in right-hand sides of ADPs when their variables are
instantiated with normal forms.

Theorem 17 (Probabilistic Usable Rules Processor). Let P be an ADP
problem. For every f € X% let Rulesp(f) = {¢ — p™ € P | root(f) = f}. For
any term t € T(E#,V), its usable rules Up(t) are the smallest set such that
Up(z) = @ for all z € V and Up(f(t1,...,tn)) = Rulesp(f) U U, Up(t;) U
Ui eRutesp (1),resupp(u) UP (0(7)), otherwise. The usable rules for P are U(P) =

Ut pmep resuppu) iapr Up(# (e} (). Then Procg(P) = {U(P)U{l — phelse | 0 —
w™ € P\U(P)}} is sound and complete, i.e., we turn the flag of all non-usable
rules to false.

Ezample 18. For our ADP problem {(13'),(14), (15), (16)}, (16) is not usable be-
cause neither f nor F occur below annotated symbols on right-hand sides. Hence,
Procyg replaces (16) by f(z,by) — {1 : A}fs¢ (16/). As discussed after Def. 11, in
contrast to the processor of Thm. 3, our usable rules processor is complete since
we do not remove non-usable rules but only set their flag to false.

Finally, we adapt the reduction pair processor. Here, (1) for every rule with
the flag true (which can therefore be used for R-steps), the expected value must be
weakly decreasing when removing the annotations. Since rules can also be used
for P-steps, (2) we also require a weak decrease when comparing the annotated
left-hand side with the expected value of all annotated subterms in the right-hand
side. Since we sum up the values of the annotated subterms of each right-hand
side, we can again use weakly monotonic interpretations. As in [3, 26], to ensure
“monotonicity” w.r.t. expected values we have to restrict ourselves to interpretations
with multilinear polynomials, where all monomials have the form c¢-a{* -... - at»
with ¢ € N and eq,...,e, € {0,1}. The processor then removes the annotations
from those ADPs where (3) in addition there is at least one right-hand side r; with
an annotated subterm t that is strictly decreasing.®

Theorem 19 (Probabilistic Reduction Pair Processor). Let Pol: T(X#,
V) — N[V] be a weakly monotonic, multilinear polynomial interpretation. Let
P =P> ¢ P such that:

(1) For every £ — {p1:71,...,pk : 7 '™ € P, we have
Pol(¢) > E1§j§kpj - Pol(b(r;)).

5 In addition, the corresponding non-annotated term right-hand side b(r;) must be at
least weakly decreasing. The reason is that in contrast to the original DP framework,
we now may have nested annotated symbols and thus, we have to ensure that they
behave “monotonically”. So we have to ensure that Pol(A) > Pol(B) also implies
that the measure of F(A) is greater than F(B). Every term r is “measured” as
Ztﬂ#r Pol(#¢ey(t)), i.e., F(A) is measured as Pol(F(a)) + Pol(A). Hence, in this
example we must ensure that Pol(A) > Pol(B) implies Pol(F(a))+Pol(A) > Pol(F(b))+
Pol(B). For that reason, we also have to require Pol(a) > Pol(b).

12 A Complete DP Framework for iAST of PTRS

(2) For every £ — {p1 :71,...,pk : 1™ € P, we have
POI(#{E}(@) > Z1gjgk pj - Ztgl#rj PO](#{&}U))-

(3) For every £ — {p1 : T1,...,pk : Tk}™ € Ps, there exists a 1 < j < k with
Pol(#c3(0)) > 2oiq,,r, Pol(#e1 (1))
If m = true, then we additionally have Pol(£) > Pol(b(r;)).

Then Procgp(P) = {P> Ub(P=)} is sound and complete.

Ezxample 20. In Sect. 5, we will present a new rewriting processor and show how
the ADP (13") can be transformed into

a— {Ya:f(H(b1),b1),Y/4: f(h(b2),b1), /4 : F(H(b1),b2), /4 : F(h(b2),b2)}™ (13")
For the resulting ADP problem {(13”), (14), (15), (16")} with
g = {12 b1, /2 : bo}™ (14) h(by) — {1: A}™ (15) f(z,bs) — {1 : A} (16")

we use the reduction pair processor with the polynomial interpretation that maps
A, F, and H to 1 and all other symbols to 0, to remove all annotations from the
a-ADP (because it contains the right-hand side f(h(bz), b;) without annotations
and thus, Pol(A) =1 > Ztﬂ#f(h(b%bl) Pol(#/}(t)) = 0). Another application of
the usable terms processor removes the remaining A-annotations. Since there are
no more annotations left, this proves iAST of Rincpi.

Finally, in proofs with the ADP framework, one may obtain ADP problems P
that have a non-probabilistic structure, i.e., every ADP has the form ¢ — {1 : r}™.
The probability removal processor then allows us to switch to ordinary DPs.

Theorem 21 (Probability Removal Processor). Let P be an ADP problem
where every ADP in P has the form £ — {1 : r}™. Let dp(P) = {#({) —
@) | L= {10} € Pyt Sy r}. Then P is iAST iff the non-probabilistic DP
problem (dp(P),np(P)) is iTerm. So if (dp(P),np(P)) is iTerm, then the processor
Procer(P) = @ is sound and complete.

5 Transforming ADPs

Compared to the DT framework for PTRSs in [26], our new ADP framework is
not only easier, more elegant, and yields a complete chain criterion, but it also has
important practical advantages, because every processor that performs a rewrite
step benefits from our novel definition of rewriting with ADPs (whereas the rewrite
relation with DTs in [26] was an “incomplete over-approximation” of the rewrite
relation of the original TRS). To illustrate this, we adapt the rewriting processor
from the original DP framework [16] to the probabilistic setting, which allows us to
prove iIAST of Rincpl from Ex. 5. (Such transformational processors had not been
adapted in the DT framework of [26].) One could also adapt the rewriting processor
to the probabilistic setting of [26], but then it would be substantially weaker, and
we would fail in proving iAST of Rincpi. We refer to App. B for our adaption of the
remaining transformational processors from [16] (based on instantiation, forward
instantiation, and narrowing) to the probabilistic setting.

In the non-probabilistic setting, the rewriting processor may rewrite a redex in
the right-hand side of a DP if this does not affect the construction of chains. To

A Complete DP Framework for iAST of PTRSs 13

ensure that, the usable rules for this redex must be non-overlapping (NO). If the
DP occurs in a chain, then this redex is weakly innermost terminating, hence by
NO also terminating and confluent, and thus, it has a unique normal form [20].
For the probabilistic rewriting processor, to ensure that the probabilities for
the normal forms stay the same, in addition to NO we require that the rule used
for the rewrite step is linear (L) (i.e., every variable occurs at most once in the
left-hand side and in each term of the multi-distribution p on the right-hand side)
and non-erasing (NE) (i.e., each variable of the left-hand side occurs in each term

of Supp(y)).

Definition 22 (Rewriting Processor). Let P be an ADP problem with P =
P w{l = {p1:r1,....,p5 : 7k}™}. Let T € posp(r;) for some 1 < j < k such
that ;| € T (X,V), i.e., there exists no annotation below or at the position . If
Ti <p.iqiier, ... qnient, where —p _is defined like fi—>7,7T but the used redex
|- does not have to be in ANFp, then we define

Proc,(P) = { P U= {p1:b(r1),....pk (i) }™}
g {€—>{p1 ST PE TR NAD; 1T} } }

U{pj q:er,....pj aqn:ent™

In the non-probabilistic DP framework, one only transforms the DPs by rewrit-
ing, but the rules are left unchanged. But since our ADPs represent both DPs and
rules, when rewriting an ADP, we add a copy of the original ADP without any
annotations (i.e., this corresponds to the original rule which can now only be used
for “R-steps”). Another change to the non-probabilistic rewriting processor is the
requirement that there exists no annotation below 7. Otherwise, rewriting would
potentially remove annotations from ;. For the soundness of the processor, we
have to ensure that this cannot happen.

Theorem 23 (Soundness’ of the Rewriting Processor). Proc, as in Def. 22
is sound if one of the following cases holds:

1. Up(r;|+) is NO, and the rule used for rewriting r;|, is L and NE.

2. Up(rj|,) is NO, and all its rules have the form ¢ — {1: 7'}

3. Up(rj|+) is NO, 7j|+ is a ground term, and r; <‘—>7)7T {q1:€e1,...,qn : en} is an
imnermost step.

We refer to App. A for a discussion on the requirements L and NE in the first
case (see the counterexamples in Ex. 35 and 36). The second case corresponds to
the original rewrite processor where all usable rules of 7|, are non-probabilistic. In
the last case, for any instantiation only a single innermost rewrite step is possible
for 7;|-. The restriction to innermost rewrite steps is only useful if r;|, is ground.
Otherwise, an innermost step on r;|, might become a non-innermost step when
instantiating r;|.’s variables.

The rewriting processor benefits from our ADP framework, because it applies
the rewrite relation <. In contrast, a rewriting processor in the DT framework
of [26] may have to replace a DT by multiple new DTs, due to the ambiguities in

" For completeness in the non-probabilistic setting [16], one uses a different definition of
“non-terminating” (or “infinite”) DP problems. In future work, we will examine whether
a similar definition would also yield completeness in the probabilistic case.

14 A Complete DP Framework for iAST of PTRS

their rewrite relation. Such a rewriting processor would fail for Rincpi Whereas with
the processor of Thm. 23 we can now prove that Rincp is 1AST.

Example 24. After applying the usable terms and the usable rules processor to
DP(Rincpl), We obtained:

a— {1:F(H(g),g)}"™ (13" h(by) — {1 : A}te (15)

g — {1/2:by,1/2: by}t (14) f(z,by) — {1: A}fle (16)

Now we can apply the rewriting processor on (13') repeatedly until all gs are

rewritten and replace it by the ADP a — {1/4 : F(H(b1),b1),1/4 : F(H(b2),b1), /4 :
F(H(b1),b2), /4 : F(H(b2), b2)}'™* as well as several resulting ADPs a — ... without
annotations. Now the annotations in the terms F(...,b;) and H(bs) are removed by
the usable terms processor, as they cannot rewrite to instances of left-hand sides
of ADPs. So the a-ADP is changed to a — {1/a : f(H(b1),b1),%/a : f(h(b2),b1),1/4 :
F(H(b1),b2), /4 : F(h(b2),b2)}™* (13"). This ADP corresponds to the observations
that explain why Rincpi is 1AST in Ex. 5: We have two terms in the right-hand side
that correspond to one A each, both with probability 1/4, one term that corresponds
to a normal form with probability 1/4, and one that corresponds to two As with
probability 1/4. So again this corresponds to a random walk where the number of
As is decreased by 1 with probability 1/4, increased by 1 with probability 1/4, and
kept the same with probability 1/2. We can now use the reduction pair processor
as described in Ex. 20 to conclude that Rincpl is iAST.

6 Conclusion and Evaluation

In this paper, we developed a new ADP framework, which advances the work
of [26] into a complete criterion for almost-sure innermost termination by using
annotated dependency pairs instead of dependency tuples, which also simplifies
the framework substantially. Moreover, we adapted the rewriting processor of the
DP framework to the probabilistic setting. Similarly, we also adapted the other
transformational processors of the original non-probabilistic DP framework, see
App. B. The soundness proofs for the adapted processors are much more involved
than in the non-probabilistic setting, due to the more complex structure of chain
trees. However, the processors themselves are analogous to their non-probabilistic
counterparts, and thus, existing implementations of the processors can easily be
adapted to their probabilistic versions.

We implemented our new contributions in the termination prover AProVE
[17] and compared the new probabilistic ADP framework with transformational
processors (ADP) to the DT framework from [26] (DT) and to AProVE’s techniques
for ordinary non-probabilistic TRSs (AProVE-NP), which include many additional
processors and which benefit from using separate dependency pairs instead of ADPs
or DTs. For the processors in Sect. 4, we could re-use the existing implementation
from [26] for our ADP framework. The main goal for probabilistic termination
analysis is to become as powerful as termination analysis in the non-probabilistic
setting. Therefore, in our first experiment, we considered the non-probabilistic
TRSs of the TPDB [36], the benchmark set used in the annual Termination
and Complexity Competition (TermComp) [18] and compared ADP and DT with

A Complete DP Framework for iAST of PTRSs 15

AProVE-NP, because at the current TermComp, AProVE-NP was the most powerful
tool for termination of ordinary non-probabilistic TRSs. Clearly, a TRS can be
represented as a PTRS with trivial probabilities, and then (innermost) AST is
the same as (innermost) termination. While both ADP and DT have a probability
removal processor to switch to the classical DP framework for such problems, we
disabled that processor in this experiment. Since ADP and DT can only deal with
innermost evaluation, we used the benchmarks from the “TRS Innermost” and
“TRS Standard” categories of the TPDB, but only considered innermost evaluation
for all examples. We used a timeout of 300 seconds for each example. The “TRS
Innermost” category contains 366 benchmarks where AProVE-NP proves innermost
termination for 293, DT is able to prove it for 133 (45% of AProVE-NP), and for ADP
this number rises to 159 (54%). For the 1512 benchmarks from the “TRS Standard”
category, AProVE-NP can prove innermost termination for 1114, DT for 611 (55%
of AProVE-NP), and ADP for 723 (65%). This shows that the transformations are
very important for automatic termination proofs as we get around 10% closer to
AProVE-NP’s results in both categories.

As a second experiment, we extended the PTRS benchmark set from [26] by 33
new PTRSs for typical probabilistic programs, including some examples with
complicated probabilistic structure. For instance, we added the following PTRS
Rgsre for probabilistic quicksort. Here, we write r instead of {1 : r} for readability.

rotate(cons(z, zs)) — {1/2 : cons(z, zs), /2 : rotate(app(zs, cons(z, nil)))}
qgsrt(zs) — if(empty(zs), low(hd(zs),tl(zs)), hd(zs), high(hd(zs),tl(zs)))
if (true, zs, x, ys) — nil empty(nil) — true empty(cons(z, zs)) — false
if (false, zs, x, ys) — app(qsrt(rotate(zs))7 cons(z, gsrt(rotate(ys))))
hd(cons(z, zs)) — tl(cons(x, zs)) — zs

The rotate-rules rotate a list randomly often (they are AST, but not termina-
ting). Thus, by choosing the first element of the resulting list, one obtains random
pivot elements for the recursive calls of gsrt in the second if-rule. In addition to
the rules above, Rqse contains rules for list concatenation (app), and rules such
that low(xz, xzs) (high(x, zs)) returns all elements of the list zs that are smaller
(greater or equal) than x, see App. C.1. In contrast to the quicksort example in [206],
proving iAST of the above rules requires transformational processors to instantiate
and rewrite the empty-, hd-, and tl-subterms in the right-hand side of the gsrt-rule.
So while DT fails for this example, ADP can prove iAST of Rqgr.

90 of the 100 PTRSs in our set are iAST, and DT succeeds for 54 of them
(60 %) with the technique of [26] that does not use transformational processors.
Adding the new processors in ADP increases this number to 77 (86 %), which
demonstrates their power for PTRSs with non-trivial probabilities. For details on
our experiments and for instructions on how to run our implementation in AProVE
via its web interface or locally, see:

https://aprove-developers.github.io/ProbabilisticADPs/

There, we also performed experiments where we disabled individual transforma-
tional processors of the ADP framework, which shows the usefulness of each new
processor. In addition to the ADP and DT framework, an alternative technique
to analyze PTRSs via a direct application of interpretations was presented in [3].

https://aprove-developers.github.io/ProbabilisticADPs/

16

A Complete DP Framework for iAST of PTRS

However, [3] analyzes PAST (or rather strong AST), and a comparison between
the DT framework and their technique can be found in [26]. In future work, we will
adapt more processors of the original DP framework to the probabilistic setting.
Moreover, we work on analyzing AST also for full instead of innermost rewriting.

References

1]

[12]

[13]

S. Agrawal, K. Chatterjee, and P. Novotny. “Lexicographic Ranking Super-
martingales: An Efficient Approach to Termination of Probabilistic Programs”.
In: Proc. ACM Program. Lang. 2.POPL (2017). por: 10.1145/3158122.

T. Arts and J. Giesl. “Termination of Term Rewriting Using Dependency
Pairs”. In: Theor. Comput. Sc. 236.1-2 (2000), pp. 133-178. por: 10.1016/
S0304-3975(99)00207-8.

M. Avanzini, U. Dal Lago, and A. Yamada. “On Probabilistic Term Rewrit-
ing”. In: Sci. Comput. Program. 185 (2020). DO1: 10.1016/j.scic0.2019.102338.
M. Avanzini, G. Moser, and M. Schaper. “A Modular Cost Analysis for
Probabilistic Programs”. In: Proc. ACM Program. Lang. 4.O0PSLA (2020).
DOI: 10.1145/3428240.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998. por: 10.1017/CB0O9781139172752.

K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and L. Verscht. “A
Calculus for Amortized Expected Runtimes”. In: Proc. ACM Program. Lang.
7.POPL (2023). por: 10.1145/3571260.

R. Beutner and L. Ong. “On Probabilistic Termination of Functional Pro-
grams with Continuous Distributions”. In: Proc. PLDI ’21. 2021, pp. 1312-
1326. por: 10.1145/3453483.3454111.

O. Bournez and F. Garnier. “Proving Positive Almost-Sure Termination”.
In: Proc. RTA ’05. LNCS 3467. 2005, pp. 323-337. poL: 10.1007/978-3-540-
32033-3_24.

K. Chatterjee, H. Fu, and P. Novotny. “Termination Analysis of Probabilistic
Programs with Martingales”. In: Foundations of Probabilistic Programming.
Ed. by G. Barthe, J. Katoen, and A. Silva. Cambridge University Press, 2020,
221-258. por: 10.1017/9781108770750.008.

U. Dal Lago and C. Grellois. “Probabilistic Termination by Monadic Affine
Sized Typing”. In: Proc. ESOP ’17. LNCS 10201. 2017, pp. 393-419. por:
10.1007/978-3-662-54434-1_15.

C. Faggian. “Probabilistic Rewriting and Asymptotic Behaviour: On Termi-
nation and Unique Normal Forms”. In: Log. Methods in Comput. Sci. 18.2
(2022). poT: 10.46298 /Imcs-18(2:5)2022.

L. M. Ferrer Fioriti and H. Hermanns. “Probabilistic Termination: Soundness,
Completeness, and Compositionality”. In: Proc. POPL ’15. 2015, pp. 489-501.
DOI: 10.1145/2676726.2677001.

C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, and S. Swiderski. “Proving
Termination by Dependency Pairs and Inductive Theorem Proving”. In: J.
Autom. Reason. 47.2 (2011), pp. 133-160. por: 10.1007/s10817-010-9215-9.

https://doi.org/10.1145/3158122
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3428240
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/3571260
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1017/9781108770750.008
https://doi.org/10.1007/978-3-662-54434-1_15
https://doi.org/10.46298/lmcs-18(2:5)2022
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1007/s10817-010-9215-9

A Complete DP Framework for iAST of PTRSs 17

[14] J. Giesl and T. Arts. “Verification of Erlang Processes by Dependency Pairs”.
In: Appl. Algebra Eng. Commun. Comput. 12.1/2 (2001), pp. 39-72. DOL:
10.1007/5002000100063.

[15] J. Giesl, R. Thiemann, and P. Schneider-Kamp. “The Dependency Pair
Framework: Combining Techniques for Automated Termination Proofs”. In:
Proc. LPAR ’04. LNCS 3452. 2004, pp. 301-331. por1: 10.1007/978-3-540-
32275-7_21.

[16] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. “Mechanizing and
Improving Dependency Pairs”. In: J. Autom. Reason. 37.3 (2006), pp. 155~
203. por: 10.1007/s10817-006-9057-7.

[17] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Pliicker, P. Schneider-Kamp, T. Stroder, S. Swiderski,
and R. Thiemann. “Analyzing Program Termination and Complexity Auto-
matically with AProVE”. In: J. Autom. Reason. 58.1 (2017), pp. 3-31. DOL:
10.1007/s10817-016-9388-y.

[18] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. “The
Termination and Complexity Competition”. In: Proc. TACAS ’19. LNCS
11429. 2019, pp. 156-166. po1: 10.1007,/978-3-030-17502-3_10.

[19] J. Giesl, P. Giesl, and M. Hark. “Computing Expected Runtimes for Constant
Probability Programs”. In: Proc. CADE ’19. LNCS 11716. 2019, pp. 269-286.
DoI: 10.1007/978-3-030-29436-6_16.

[20] B. Gramlich. “Abstract Relations between Restricted Termination and Con-
fluence Properties of Rewrite Systems”. In: Fundamenta Informaticae 24
(1995), pp. 2-23.

[21] B. Gramlich. “Termination and confluence: properties of structured rewrite
systems”. PhD thesis. University of Kaiserslautern, 1996. URL: https://www.
logic.at/staff/gramlich/papers/thesis96.pdf.

[22] N. Hirokawa and A. Middeldorp. “Automating the Dependency Pair Method”.
In: Inf. Comput. 199.1-2 (2005), pp. 172-199. por: 10.1016/j.ic.2004.10.004.

[23] M. Huang, H. Fu, K. Chatterjee, and A. K. Goharshady. “Modular Verification
for Almost-Sure Termination of Probabilistic Programs”. In: Proc. ACM
Program. Lang. 3.00PSLA (2019). por: 10.1145/3360555.

[24] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. “Weakest Pre-
condition Reasoning for Expected Runtimes of Randomized Algorithms”. In:
J. ACM 65 (2018), pp. 1-68. por: 10.1145/3208102.

[25] B. L. Kaminski, J. Katoen, and C. Matheja. “Expected Runtime Analyis
by Program Verification”. In: Foundations of Probabilistic Programming.
Ed. by G. Barthe, J. Katoen, and A. Silva. Cambridge University Press, 2020,
185-220. por: 10.1017/9781108770750.007.

[26] J.-C. Kassing and J. Giesl. “Proving Almost-Sure Innermost Termination of
Probabilistic Term Rewriting Using Dependency Pairs”. In: Proc. CADE ’23.
LNCS 14132. 2023, pp. 344-364. po1: 10.1007,/978-3-031-38499-8_20.

[27] J.-C. Kassing and J. Giesl. “Proving Almost-Sure Innermost Termination of
Probabilistic Term Rewriting Using Dependency Pairs”. In: CoRR abs/2305.11741
(2023). Full version of [26] with all proofs. pOI: 10.48550/arXiv.2305.11741.

https://doi.org/10.1007/s002000100063
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-29436-6_16
https://www.logic.at/staff/gramlich/papers/thesis96.pdf
https://www.logic.at/staff/gramlich/papers/thesis96.pdf
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1145/3360555
https://doi.org/10.1145/3208102
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.48550/arXiv.2305.11741

18

[28]

[29]

[31]

32]

A Complete DP Framework for iAST of PTRS

U. D. Lago, C. Faggian, and S. R. Della Rocca. “Intersection Types and
(Positive) Almost-Sure Termination”. In: Proc. ACM Program. Lang. 5.POPL
(2021). po1: 10.1145/3434313.

D. S. Lankford. On Proving Term Rewriting Systems are Noetherian. Memo
MTP-3, Math. Dept., Louisiana Technical University, Ruston, LA, 1979.
URL: http://www.ens-lyon.fr/LIP /REWRITING / TERMINATION /
Lankford _Poly_Term.pdf.

L. Leutgeb, G. Moser, and F. Zuleger. “Automated Expected Amortised Cost
Analysis of Probabilistic Data Structures”. In: Proc. CAV ’22. LNCS 13372.
2022, pp. 70-91. por: 10.1007/978-3-031-13188-2_4.

A. Mclver, C. Morgan, B. L. Kaminski, and J.-P. Katoen. “A New Proof
Rule for Almost-Sure Termination”. In: Proc. ACM Program. Lang. 2.POPL
(2018). por: 10.1145/3158121.

F. Meyer, M. Hark, and J. Giesl. “Inferring Expected Runtimes of Probabilis-
tic Integer Programs Using Expected Sizes”. In: Proc. TACAS ’21. LNCS
12651. 2021, pp. 250-269. DOI: 10.1007/978-3-030-72016-2_14.

M. Moosbrugger, E. Bartocci, J.-P. Katoen, and L. Kovécs. “Automated
Termination Analysis of Polynomial Probabilistic Programs”. In: Proc. ESOP
’21. LNCS 12648. 2021, pp. 491-518. por: 10.1007/978-3-030-72019-3_18.
V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. “Bounded Expectations:
Resource Analysis for Probabilistic Programs”. In: Proc. PLDI ’18. 2018,
pp- 496-512. por: 10.1145/3192366.3192394.

L. Noschinski, F. Emmes, and J. Giesl. “Analyzing Innermost Runtime
Complexity of Term Rewriting by Dependency Pairs”. In: J. Autom. Reason.
51 (2013), pp. 27-56. DOI: 10.1007/978-3-642-22438-6_32.

Termination Problem Data Base. https://github.com/TermCOMP /TPDB.
R. Thiemann. “The DP Framework for Proving Termination of Term Rewrit-
ing”. PhD thesis. RWTH Aachen University, 2007. URL: https://verify.rwth-
aachen.de/da/thiemann-diss.pdf.

D. Wang, D. M. Kahn, and J. Hoffmann. “Raising Expectations: Automating
Expected Cost Analysis with Types”. In: Proc. ACM Program. Lang. 41CFP
(2020). por: 10.1145/3408992.

https://doi.org/10.1145/3434313
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1145/3158121
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/978-3-642-22438-6_32
https://github.com/TermCOMP/TPDB
https://verify.rwth-aachen.de/da/thiemann-diss.pdf
https://verify.rwth-aachen.de/da/thiemann-diss.pdf
https://doi.org/10.1145/3408992

A Complete DP Framework for iAST of PTRSs 19

Appendix

In App. A we give all proofs for our new results and observations. Then in App. B
we adapt further DP transformation processors to the probabilistic setting. More
precisely, we consider the instantiation, forward instantiation, and the narrowing
processor. Because the original narrowing processor turns out to be unsound in
the probabilistic setting, the probabilistic narrowing processor only instantiates
variables according to the narrowing substitutions. Hence, we call it the rule overlap
instantiation processor. Finally, in App. C, we present some examples from our
collection of benchmarks that demonstrate certain aspects of our new contributions.

A Proofs

We start by showing that Rincpi is a counterexample for completeness of the DT
framework from [26]. First, we introduce the framework and all needed notation.

For any term t € T (X,V) with f € D, we say that ¢ is the flattened copy of
t#. In the probabilistic adaption of the DP framework from [26], for any term r in
the right-hand side of a rule, one has to consider all subterms of r with defined
root symbol at once (which leads to dependency tuples instead of pairs). In order
to deal just with terms instead of multisets, one defines r’s dt transformation
di(r) = com, (t7, ..., t#), if {t1,...,t,} are all subterms of r with defined root
symbol. Here, C is extended by fresh compound constructor symbols com,, of arity
n for every n € N. To make dt(r) unique, one uses the lexicographic ordering
< on positions where t; = r|,, and m < ... < T,. As an example, dt(g?(x)) =
coms (G(g(x)), G(x)).

To abstract from nested compound symbols and from the order of their ar-
guments, the following normalization is introduced. For any term ¢, its content
cont(t) is the multiset defined by cont(com,,(t1,...,t,)) = cont(t1) U. ..U cont(t,)
and cont(t) = {t} for other terms t. For any term t with cont(t) = {t1,...,tn},
the term com,, (1, ...,t,) is a normalization of t. For two terms ¢,t', one defines
t ~ t' if cont(t) = cont(t'). So for example, coms(z,z,y) is a normalization of
comg(comy (x), comz(y, x)). One does not distinguish between terms that are equal

w.r.t. &~ and writes com,,(t1,...,t,) for any term ¢ with a compound root symbol
where cont(t) = {t1,...,tn}, i.e., all such ¢ are considered to be normalized.
For every rule £ — p = {p1 : r1,...,pk : 7}, the corresponding dependency

tuple (DT) relates ¢# with {p; : dt(r1),...,pr : dt(ry)}. However, in addition,
DTs also store the original rule ¢ — p. As shown in [26], this is needed for
the soundness of their approach, because otherwise, one cannot simulate every
possible rewrite sequence with dependency tuples. So one defines DT (£ — pu) =
(# 0y — {py : (dt(r1),r1), ...,k : (dt(rg),71)}. DT(R) denotes the set of all
dependency tuples of a PTRS R. For example, DT (Rn) = {(G(z),g(x)) — {/2:
{comy(G(g(x)), G(x)), g2(x)), /2 : (comg, z)}}. This type of rewrite system is called
a probabilistic pair term rewrite system (PPTRS).

Definition 25 (PPTRS, — p). Let P be a finite set of rules of the form (£%#)
— {p1:{dy, 1), .., pk : {dg, 1)} For every such rule, let proj,(P) contain {# —

20 A Complete DP Framework for iAST of PTRS

{p1:d1,...,px : dp} and projy(P) contain £ — {p1 : r1,..., 0k : Tk }. If projy(P)
is a PTRS and cont(d;) C cont(dt(r;)) for all 1 < j <k, then P is a« PPTRS.

A normalized term com,(s1,. .., $p) rewrites with the PPTRS P to {p1 : by, ...,
pr : b} wrt. a PTRS R (denoted —»px) if there are an ({#) — {p; :
(di,71),. ok 2 (di, i)} € P, a substitution o, and an 1 < i < n with s; =
(%o € ANFr, and for all 1 < j < k we have b; = com,,(t},...,tJ) where:

(a) t{ =djo for alll < j <k, i.e., we rewrite the term s; using proj,(P).
(b) For every 1 < i’ <n with i’ # i we have
(i) t}, = s forall1 <j <k or
(ii) ¢}, = si[rjol. forall1 <j <k,
if si|lr = Lo for some position T and if £ — {p1 :71,..., Pk T} ER.
So s; stays the same in all b; or one can apply the rule from proj,(P) to
rewrite sy in all b, provided that this rule is also contained in R. Note that
even if the rule is applicable, the term sy can still stay the same in all b;.

Now one can simulate the rewrite step g2(z) —x,, {1/2: g*(z), /2 : g(z)} by
comz(G(g(2)), G(x)) —> DT(Rp)Ra {1/2 : coms(G(g*(x)), G(g()), G(2)), /2 : comy(G(x))}
using DT (Rew). In com2(G(g(x)), G(x)), due to (a), the (underlined) second ar-
gument s; = so = G(x) is rewritten with proj; (D7 (R.w)) to coms(G(g(z)), G(x))
or comg, both with probability 1/2. At the same time, due to (b)(ii), the (twice
underlined) subterm g(x) of the first argument s;; = s1 = G(g(x)) is rewritten

using the original rule g(r) — {1/2 : g2(x), 1/2 : 2} to G(g%(x)) or G(x), both
with probability 1/2. So when rewriting s; = so = G(z) one can also perform the
corresponding rewrite step on its flattened copy inside s;; = 51 = G(g(z)). But

the ambiguity in Def. 25 also allows the step coma(G(g()), G(2)) —> DT(Rw) Re
{Y/2 : com3(G(g(z)), G(g(x)), G(x)), 1/2:com1(G(g(x)))} that does not simulate any
original rewrite step with R,,. Therefore, the approach of [26] is not complete in
the probabilistic setting.

In [26], there is also an analogous rewrite relation for PTRSs, where one can
apply the same rule simultaneously to the same subterms in a single rewrite step.

Definition 26 (%R) For a normalized term com,,(s1,...,$,) and a PTRS R,
let comy, (81, ..., 8n) —> R {P1:b1, ..., Pk :bx} if there are £—{p1:71,...,pp:7Tk} € R,
a position 7, a substitution o, and an 1<i<n with s;|r =lo such that lo € ANFg,
and for all 1< j< k we have bj = com, (], ..., 1)) where

(a) t] = si[rjolx for all1 < j <k, i.e., we rewrite the term s; using R.
(b) For every 1 < i’ <n with i’ # i we have

(i) t,, =sp forall1<j<k or

(ii) t}, = si[rjol. for all 1 < j <k, if sy|. = Lo for some position T.

The DT framework of [26] works on (probabilistic) DT problems (P, R), where
P is a PPTRS and R is a PTRS. To analyze a PTRS R, one starts with the DT
problem (DT (R),R). To adapt the chain criterion to their setting, one uses a
notion of chain trees that is defined as follows. ¥ = (V, E, L, P) is a (P, R)-chain
tree (CT) if
1. (V,E) is a (possibly infinite) directed tree with nodes V # @ and directed
edges E CV x V where vE = {w | (v,w) € E} is finite for every v € V.

A Complete DP Framework for iAST of PTRSs 21

[\V]

LV = (0,1 x T (Z]#, V) labels every node v by a probability p, and a term
t,. For the root v € V of the tree, we have p, = 1.

3. P C V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes to

indicate whether we use P or R for the next rewrite step. R =V \ (Leaf U P)

are all inner nodes that are not in P. Thus, V = PW R W Leaf.

4. For all ve P: If vE={wy, ..., wi}, then t, —>px {p][’)wl Sty 2 okt b

5. For allv € R: If vE = {wy,...,ws}, then t, —> {PZ;? N pka Sty b
6. Every infinite path in ¥ contains infinitely many nodes from P.

Again, one defines |T|Lear = Y, crear Po and says that (P, R) is iAST if |T|Lear = 1
for all (P, R)-CTs T. This yields a chain criterion which is only incomplete, i.e.,
here we only have “if” instead of “iff”.

Theorem 27 (Chain Crit. of [26]). A PTRS R is iAST if (DT (R),R) is iAST.

Lemma 28 (Incompleteness of Chain Criterion for Rinp). The DT Problem
(DT(RincpI);Rincpl) is not 1AST.

Proof. Consider Rincpl from Ex. 5 with the rules

a—{1:f(h(g),g)} h(by) = {1:a}
g — {/2:by,1/2: by} f(z,by) — {1:a}

The set DT (Rincpl) consists of the dependency tuples

— {1 : {comy(F(h(g),g), H(g), G, G),f(h(g).8))}
— {1/2: (comg, by}, /2 : (comg, ba)}

— {1: (comi(A),a)}

— {1: (comy(A),a)}

Now we obtain the following (DT(incpl)s Rincpl)-chain tree T with |T|iear = 0 that
uses both —> p7(Ri) Rine A0 —> R, for the edge relation:

(Aa

(G,
(H(b) h(b)

\/\/\/\/

incpl

comy (F(h(z), £). H(g), . ©) |

[+

coma(F(h@,bl)‘H(bl),g)| |1/2

| 12

comg (F(h(g), ba), H(bg), G) |

|1/4 ComQ(F(h(b1)=b1>‘H(b|))||1/4 com2<F<h<b2>,b1>,H<bm|1/4 com2<F<h(b.>,b2>,H<b2>>||1/4 comz(F(h<b2>.bz>,H<b2>>|
1

|1/4 comz(F(h(bl),bl),A)l |1/4 comQ(F(h(bz),bl),A)l ’ comz(A,H(bz))
J

comg (A, H(bg))

The part marked with a circle has the following form:

22 A Complete DP Framework for iAST of PTRS

| 1| coma (F(a, bp), H(b2)) |
i\

com3 (F(F(h(8). £). b2). H(b2)) |

[

comy (F(F(h(g), b1), b), H(b2)) | [1/2

| 1/2

coma (F(F(h(g). b) . b2), H(b2)) |

A —
comg (F(f(h(b1), b2), b2), H(b2))

N
| 1/4 |coma (F(f(h(b1), b1), ba), H(bo)) | 1/4

|1/4 comy (F(f(h(bg), ba), bg), H(b2))

coms (F(f(h(bg), b1) . b), H(b3)) | [1/4

NF.
7?'incpl

| 1/4

comy (F(1b2) H(b3) | /4

comy (F(+bz) H(b2)) |

| 1/4

comg (F(2, bz). Hibp)) |

This tree has the form of the RST from Ex. 5 (the blue and green part) with
the additional context coms(F(O, by), H(bs)) around it. Again, the part inside this
context will reach a normal form with probability 1 and afterwards, e.g., at the red
node labeled with coms(F(f(h(bs),by1),bs), H(b2)), we can rewrite F(...) with the
DT to A, which yields coma (A, H(bs)) in the gray node. In this way, one obtains
infinitely many nodes labeled with comy(A, H(b2)) whose probabilities add up to
1/4 (in the tree we depicted this by a gray node instead).

Note that this tree satisfies the conditions (1)-(5) of a CT, but it does not satisfy
condition (6) as the part corresponding to the circle contains infinite paths without
P nodes. We have to additionally cut these infinite paths to create a valid CT T
and show that we still have |¥|ieas < 1. Since these infinite subtrees of the parts
that do not use any DTs are all iAST, we can use the same idea as in the proof of
the P-Partition Lemma of [27, Lemma 50] (see also Lemma 33). The variant of
the P-Partition Lemma that we apply here is called Cutting Lemma (Lemma 30)
below. Then we obtain the desired (DT (Rincpt); Rincpt)-CT T with |T|rear < 1.

The problem with this CT is that when applying a DT to rewrite the underlined
G in the child of the root, then one should not rewrite both flattened copies g in

comy(F(h(g),g),H(g), G, G). The reason is that G either corresponds to the two

flattened copies g in the arguments of h and H or to the flattened copy g in the second
argument of F. This “wrong” rewriting yields terms like coma(F(h(b2), b1), H(b1))
which do not correspond to any terms in the original RST since the arguments of h
and H are different. Indeed, while the corresponding term f(h(bz),by) in the RST
is a normal form, coms(F(h(bs),b1),H(by)) contains the subterm H(b;) which is

not a normal form. 0

We first recapitulate the notion of a sub-chain tree from [27]. In Def. 29
and Lemma 33, let (P, R) be an arbitrary DT problem.

Definition 29 (Subtree, Sub-CT). Let ¥ = (V,E, L, P) be a tree that satisfies
Conditions (1)-(5) of a (P,R)-CT. Let W C V' be non-empty, weakly connected,
and for all x € W we have tENW = @ or xtENW = zE. Then, we define
the subtree (or sub-CT if it satisfies Condition (6) as well) S[W] by TW] =
(W, EN(W x W), LW PN (W \ Wieas)). Here, Wieas denotes the leaves of the tree

A Complete DP Framework for iAST of PTRSs 23

GVl = (W,E N (W x W)) so that the new set PN (W \ Wieaz) only contains
inner nodes. Let w € W be the root of GV, To ensure that the root of our subtree

has the probability 1 again, we use the labeling LV (z) = (g—g 2 t3) for all nodes
x € W. If W contains the root of (V| E), then we call the sub-chain tree grounded.

The property of being non-empty and weakly connected ensures that the
resulting graph G*IW! is a tree again. The property that we either have tENW = @
or tE NW = zE ensures that the sum of probabilities for the successors of a node
x is equal to the probability for the node x itself.

We say that a CT (or RST) ¥ converges (or terminates) with probability p € R
if we have |%|reas = p. Now we can prove the cutting lemma that is needed for the
proof of Lemma 28.

Lemma 30 (Cutting Lemma). Let ¥ = (V, E, L, P) be a tree that only satisfies
Conditions (1)-(5) of a (P, R)-CT and let T converge with probability < 1. Assume
that every subtree that only contains nodes from R converges with probability 1.
Then there exists a subtree T that converges with probability < 1 such that every
infinite path has an infinite number of nodes from P, i.e., ' is a valid (P,R)-CT
as it now also satisfies Condition (6).

Proof. Let ¥ = (V,E, L, P) be a tree that only satisfies Conditions (1)-(5) of a
(P, R)-CT with |T|Lear = ¢ < 1 for some ¢ € R. Since we have 0 < ¢ < 1, there is
an € > 0 such that ¢+ ¢ < 1. Remember that the formula for the geometric series
is:

— [1\" 1 1

> () = - forall d € R such that T <1

n=1

Let d = % + 2. Now, we have % = ;ﬂ < 1 and:

1 1 1 1 1 = /1\"
—tl< 42 —H4l<des-<d-1 —<es - < 17
£+ 5+ s+ € a—1°° ;(d) e (17)

We will now construct a subtree ' = (V', E', L', P') such that every infinite path
has an infinite number of P nodes and such that

) 00 1 n
‘T ‘Leaf § |{Z‘Leaf + T; <d (18)

and then, we finally have

(18) = /1\" = /1\" an
|‘I/|Leaf < |T|Leaf + Z <d> =c+ Z (d) < c+exl
n=1 n=1

The idea of this construction is that we cut infinite subtrees of pure R nodes as
soon as the probability for normal forms is high enough. In this way, one obtains
paths where after finitely many R nodes, there is a P node, or we reach a leaf.

The construction works as follows. For any node z € V, let £(z) be the number
of P nodes in the path from the root to x. Furthermore, for any set W C V and

24 A Complete DP Framework for iAST of PTRS

EeN let LWk)={xeW | L(x) <kV(rePAL(Z)<k+1)} be the set of
all nodes in W that have at most k& nodes from P in the path from the root to its
predecessor. So if x € £(W, k) is not in P, then we have at most k£ nodes from P
in the path from the root to x and if x € £(W, k) is in P, then we have at most
k + 1 nodes from P in the path from the root to z. We will inductively define a set
U €V such that U, C £(V, k) and then define the subtree as T = [\, oy Us]-

We start by considering the subtree Ty = ¥[£(V,0)]. This tree only contains
nodes from R. While the node set £(V,0) itself may contain nodes from P, they
can only occur at the leaves of ¥, and by definition of a subtree, we remove every
leaf from P in the creation of ¥y. Using the prerequisite of the lemma, we get
|Z0lreas = 1. In Fig. 1 one can see the different possibilities for Ty. Either ¥ is
finite or ¥y is infinite. In the first case, we can add all the nodes to Uy since there
is no infinite path of pure R nodes. Hence, we define Uy = £(V,0). In the second
case, we have to cut the tree at a specific depth once the probability of leaves is
high enough. Let dy(y) be the depth of the node y in the tree ¥y. Moreover, let
Dy(k) = {z € £(V,0) | do(y) < k} be the set of nodes in Ty that have a depth of
at most k. Since |Tp|rear = 1 and |+ |reas iS monotonic w.r.t. the depth of the tree
T, we can find an Ny € N such that

1
Z pf“zl—g

z€Leaf¥0,do(z)<Np

Here, Leaf® and pf denote the set of leaves and the probability of the node x in
the tree T, resp.

We include all nodes from Dg(Np) in Uy and delete every other node of T.
In other words, we cut the tree after depth Ny. This cut can be seen in Fig. 1,
indicated by the red line. We now know that this cut may increase the probability
of leaves by at most é. Therefore, we define Uy = Dy(Np) in this case.

For the induction step, assume that we have already defined a subset U; C £(V,).
Let H; ={x €U; |z € P,L(x) =i+ 1} be the set of leaves in Z[U;] that are in P.
For each = € H;, we consider the subtree that starts at = until we reach the next
node from P, including the node itself. Everything below such a node will be cut.
To be precise, we regard the tree ¥, = (V,, E;, L., P,) = S[£(zE*,i+ 1)]. Here,
xE* is the set of all nodes that are reachable from z by arbitrary many steps.

First, we show that |T,|Lear = 1. For every direct successor y of x, the subtree
Ty = T[yE%] of T, that starts at y does not contain any nodes from P. Hence,
we have |‘Iy|Leaf = 1 by the prerequisite of the lemma, and hence

|sz|Leaf = Z Py - |Ty|Leaf = Z Dy - 1= Z Dy = 1.

yexkE yexE yexE

For the construction of U; 1, we have the same cases as before, see Fig. 1. Either
T, is finite or ¥, is infinite. Let Z, be the set of nodes that we want to add to our
node set U;y1 from the tree T,. In the first case we can add all the nodes again
and set Z, = V. In the second case, we once again cut the tree at a specific depth
once the probability for leaves is high enough. Let d;,(z) be the depth of the node
z in the tree T,. Moreover, let D, (k) = {z € V,. | dx(2) < k} be the set of nodes

A Complete DP Framework for iAST of PTRSs 25

(a) T, finite (b) ¥, infinite

Fig. 1: Possibilities for T,

in ¥, that have a depth of at most k. Since |Ty|rear = 1 and | - |Lear IS monotonic
w.r.t. the depth of the tree ¥,, we can find an N, € N such that

N
e >1— (= :
Z Py = <d) | H,|

y€ELeaf *w ,dy (y) <Na

We include all nodes from D, (N,) in U;11 and delete every other node of T,. In
other words, we cut the tree after depth INV,. We now know that this cut may increase

the probability of leaves by at most (é)iﬂ . ﬁ Therefore, we set Z, = D, (N,).

We do this for each x € H; and in the end, we set U;41 = U; U Ueri L.

It is straightforward to see that | J, .y Uy satisfies the conditions of Def. 29, as we
only cut after certain nodes in our construction. Hence, (J; oy Ur is non-empty and
weakly connected, and for each of its nodes, it either contains no or all successors.
Furthermore, ¥ = | J; cy Uk is a sub-chain tree which does not contain an infinite
path of pure R nodes as we cut every such path after a finite depth.

It remains to prove that |¥'|reat < [Tlreat + 2 ey (é)n holds. During the i-th
iteration of the construction, we may increase the value of |¥|Leas by the sum of all
probabilities corresponding to the new leaves resulting from the cuts. As we cut
at most |H;| trees in the i-th iteration and for each such tree, we added at most

a total probability of (é)wrl . |I_},‘ for the new leaves, the value of |¥|1ear might

increase by
- N g 1 i+1
“\d |H;| \d

26 A Complete DP Framework for iAST of PTRS

in the i-th iteration, and hence in total, we then get

|T/|Leaf < |T|Leaf + f: l !
— d)

n=1
as desired (see (18)). |

Next, we want to prove our new chain criterion for ADPs from Thm. 12, which
is both sound and complete. Due to our new definition of ADPs, this proof is easier
than for the probabilistic chain criterion that is only sound from [26] (Thm. 27).
We start by defining an important set of positions that we will use throughout the
proof.

Definition 31 (posp.s). Let R be a PTRS. For a termt € T (X,V) we define
POSposs(t, R) = {7 | m € posp(t),t|x ¢ NFr}. Here, NFr again denotes the set of
all normal forms w.r.t. R.

S0 pOoSpyss(t, R) contains all positions of subterms of ¢ that may be used as
a redex now or in future rewrite steps, because the subterm has a defined root
symbol and is not in NFx.

Ezample 32. Consider the following PTRS R over a signature with D = {f, g} and
C = {a,s} with the rules f(a,a) — {1 :s(f(g,g))} and g — {1 : a}. For the term
t =s(f(g,g)) we have posp,(t,R) = {1,1.1,1.2}.

Finally, for two (possibly annotated) terms s,t we define s =t if b(s) = b(¢).
Theorem 12 (Chain Criterion). R is iAST iff DP(R) is iAST.

Proof. In the following, we will often implicitly use that for an annotated term
teT (Z#, V), we have b(t) € ANFr, iff t € ANFpp() since a rewrite rule and its
corresponding canonical annotated dependency pair have the same left-hand side.

Soundness

Assume that R is not iAST. Then, there exists an innermost R-RST T = (V, E, L)
whose root is labeled with (1 :) for some term ¢ € T (X, V) that converges with
probability < 1. We will construct a DP(R)-CT ¥’ = (V, E, L',V \ Leat*) with
the same underlying tree structure and an adjusted labeling such that p> = p:f/
for all x € V', where all the inner nodes are in P. Since the tree structure and the
probabilities are the same, we then get |T|rear = |3'|Leas. TO be precise, the set of
leaves in ¥ is equal to the set of leaves in ¥’, and they have the same probabilities.
Since |¥|Lear < 1, we thus have |T'|rear < 1. Hence, there exists a DP(R)-CT ¥’
that converges with probability < 1 and DP(R) is not iAST either.

[2+]]

’
|P5|t5|

A Complete DP Framework for iAST of PTRSs 27

We construct the new labeling L’ for the DP(R)-CT inductively such that for
all inner nodes € V \ Leaf with children nodes 2E = {yi1,...,yx} we have
tl, <—>DP {1;”11 : t;l,...,% tty, +- Let X C V be the set of nodes = where we
have already defined the labeling L'(x). During our construction, we ensure that

the following property holds:
For every node x € X we have t, =t and posp,e(tz, R) C posp# (t}). (19)

This means that the corresponding term ¢, for the node z in ¥ has the same
structure as the term ¢/, in %', and additionally, all the possible redexes in ¢,
are annotated in ¢/,. The annotations ensure that we rewrite with Case (PR) of
Def. 11 so that the node x is contained in P. We label the root of ¥ with #p(t).
Here, we have t = #p(t) and pospyg(t,R) C posp(t) = pospx (#p(t)). As long
as there is still an inner node = € X such that its successors are not contained
in X, we do the following. Let 2E = {y1,...,yx} be the set of its successors. We

need to define the corresponding terms t; ,...,t, for the nodes yi,...,yx. Since
x is not a leaf, we have t, —g {I;’; tlys e, ZZ’: : ty, }. This means that there is a
rule £ — {p1 : r1,...,pk : "k} € R, a position 7, and a substitution ¢ such that

te|x = Lo € ANFr. Furthermore, we have t, = t,[r;o]; for all 1 < j < k. So the
labeling of the successor y; in T is L(y;) = (po - pj : ta[rjo]x) for all 1 < j < k.

The corresponding ADP for the rule is £ — {p; : #D(rl) Dk HD(rR) Fe.
Furthermore, 7 € posp.(tz; R) C(ra) Posp#(t,) and t, —(IH) t/.. Hence, we can
rewrite ¢, with £ — {p1 : #p(r1),...,px : #p(rg)}'™e, using the position 7 and
the substitution o, and Case (PR) of Def. 11 applies. We get t/, <i—>DP(R) {p1 :
tyys ok ¢ by, b with ¢ = ¢, [#p(rj)olx by (PR). This means that we have
ty, =1, . It remains to prove posp,g(ty,; R) € posp#(ty,) forall 1 < j < k. For all
positions 7 € pospy(ty;, R) = POSpygs(tz[1jo]x, R) that are orthogonal or above
7, we have 7 € posp,ss(tz, R) C(rm) Posp#(t,,), and all annotations orthogonal or
above 7 remain in t; = as they were in t},. For all positions 7 € posp,g(ty,, R) =
POSposs ([0 7, R) that are below 7w, we know that, due to innermost evaluation,
at least the defined root symbol of a term that is not in normal form must be
inside r;, and thus 7 € posp« (t;j), as all defined symbols of r; are annotated in
ty, = ty[#p(r;)o]x. This ends the induction proof for this direction.

Completeness

Assume that DP(R) is not iAST. Then, there exists a DP(R)-CT ¥ = (V, E, L, P)
whose root is labeled with (1 : t) for some annotated term ¢ € T (X#,V) that
converges with probability < 1. We will construct an R-RST ¥’ = (V, E, L’) with
the same underlying tree structure and an adjusted labeling such that p> = pgl
for all x € V. Since the tree structure and the probabilities are the same, we then
get |T'|rear = |T|rear < 1. Therefore, there exists an R-RST T’ that converges with
probability < 1. Hence, R is not iAST either.

28 A Complete DP Framework for iAST of PTRS

[e]es] [ee]e]
1 1

We construct the new labeling L’ for the R-RST inductively such that for all inner

nodes x € V' \ Leaf with children nodes 2E = {y1,...,yr} we have t/, Sz {I;ﬂ :
typs e es p;’“ : 1y, }- Let X C'V be the set of nodes z where we have already defined

the labeling L'(z). During our construction, we ensure the following property:
For every node z € X we have t, = ¢/, and pospx (t,) = 2. (20)

This means that the corresponding term ¢, for the node z in ¥ has the same
structure as the term ¢/, in ¥’, and additionally, it contains no annotations. We
label the root of T with b(t). Here, we have ¢ = b(¢) and pospx(b(t)) = &. As long
as there is still an inner node = € X such that its successors are not contained in
X, we do the following. Let zE = {y1, ..., yr} be the set of its successors. We need
to define the corresponding terms t;;w e ,t;k for the nodes y1, ..., yx. Since = is
not a leaf, we have t, < pp) {pij Styses % : ty, }. This means that there
is an ADP ¢ — {p1 : #p(71),...,0k : #p(rK)}'™ € DP(R), a position 7, and a
substitution o such that b(t,|r) = fo € ANFr. Furthermore, we have t,, = t;[r;o],
or t,, = ty[#p(r;)o] forall 1 <j <k.

The original rule for the ADP is £ — {py : r1,...,pi : 7 }. Furthermore, we
have t, =gy t,,. Hence, we can rewrite ¢, with £ — {py : 71,...,px : 71}, using
the position 7 and the substitution o, since t,|, = o € ANFgr (as pospx(t,) = @).
We get t! S {p1: tyys - Pk ty, b with ¢, =t [r;o];. This means that we have
ty, =(1m) t;j and posp# (t;j) = @ for all 1 < j < k, which ends the induction proof
for this direction. 0

Next, we prove the theorems regarding the processors that we adapted from
[26] to our new ADP framework. We will see that the proofs become way more
readable compared to [26] (even though they are still more complicated than in
the non-probabilistic setting). First, we repeat two lemmas from [26] and prove the
theorems on the processors afterwards. We start with the P-partition lemma. This
lemma was proven in [26] and still applies to our new ADP problems, since the
structure of CTs are the same as in [26].

Lemma 33 (P-Partition Lemma, [26]). Let ¥ = (V,E, L, P) be a P-CT that
converges with probability < 1. Assume that we can partition P = P W Py such
that every sub-CT that only contains P-nodes from Py converges with probability 1.
Then there is a grounded sub-CT ¥’ that converges with probability < 1 such that
every infinite path has an infinite number of nodes from Ps.

Next, we recapitulate the starting lemma. W.l.o.g., we will often assume that
we label the root of our CT with (1 : t) for an annotated term t such that
b(t) = sf € ANFp for a substitution § and an ADP s — ... € P, and pospx(t) = {e}.

A Complete DP Framework for iAST of PTRSs 29

Lemma 34 (Starting Lemma [26]). If an ADP problem P is not iAST, then
there exists a P-CT T with |T|reasr < 1 that starts with (1 : t) with b(t) = sO € ANFp
for a substitution 6 and an ADP s — ... € P, and posp«(t) = {e}.

Proof. We prove the contraposition. Assume that every P-CT ¥ converges with
probability 1 if it starts with (1 : ¢) and b(t) = s € ANFp for a substitution
and an ADP s — ... € P, and pospx(t) = {¢}. We now prove that then also
every P-CT T that starts with (1 : ¢) for some arbitrary term ¢ converges with
probability 1, and thus P is iAST. We prove the claim by induction on the number
of annotations in the initial term t.

If ¢ contains no annotation, then the CT starting with (1 : ¢) is trivially finite
(it cannot contain an infinite path, since there are no nodes in P) and hence, it
converges with probability 1. If ¢ contains exactly one annotation at position ,
then we can ignore everything above the annotation, as we will never use a P-step
above the annotated position. If ¢|; is in normal form, then the claim is again
trivial. Otherwise, we must have t|, = so for some ADP s — ... € P and some
substitution o such that ¢|, = sf € ANFp and posp« (t|r) = {e}. Then we know by
our assumption that such a CT converges with probability 1.

Now we regard the induction step, and assume that for a term ¢ with n > 1

annotations, there is a CT ¥ that converges with probability < 1. Here, our
induction hypothesis is that every P-CT ¥ that starts with (1 : ¢'), where ¢/
contains m annotations for some 1 < m < n converges with probability 1. We
distinguish two cases:
(1) We first regard the case where there exist at least two annotations at orthogonal
positions 71, T without any annotation above. Let &; = {7 € pospx(t) | 11 < 7}
and $o = {7 € pospx(t) | 7 ¢ 1} and consider the two terms #g4, (t) and #4, (t),
which contain both strictly less than n annotations. By our induction hypothesis,
we know that every P-CT that starts with (1 : #g¢, (t)) or (1 : #g,(t)) converges
with probability 1. Let Ty be the tree that starts with (1 : #g, (t)) and uses the
same rules as we did in T. We can partition P into the sets

P, := {x € P | the rewrite step at node x is below position 7 }
PQI:{I€P|$¢P1}

Note that every sub-CT of ¥ such that every infinite path has an infinite number
of Pi-nodes is a P-CT again. In order to use the P-Partition Lemma (Lemma 33) for
the tree ¥, we have to show that every sub-CT T} of T that only contains P-nodes
from P; converges with probability 1. Let ¥ = (V', E’, L', P") be a sub-CT of ¥
that does not contain nodes from P5. There exists a set W satisfying the conditions
of Def. 29 such that ¥} = T[W]. Since ¥ and ¥; have the same tree structure,
T1[W] is a sub-CT of ¥;. Moreover, T;[W] is a P-CT, since the set W does not
contain any inner nodes from P». Finally, since T;1[W] is a sub-CT of a P-CT
that converges with probability 1, we know that T;[W] must be converging with
probability 1 as well.

Now, we have shown that the conditions for the P-Partition Lemma (Lemma 33)
are satisfied. We can now apply the P-Partition Lemma to get a grounded sub-CT
T of ¥ with |T'|rear < 1 such that on every infinite path, we have an infinite

30 A Complete DP Framework for iAST of PTRS

number of P, nodes. Let T be the tree that starts with #4,(¢) and uses the same
rules as we did in .

Again, all local properties for a P-CT are satisfied. Additionally, this time we
know that every infinite path has an infinite number of P>-nodes in ¥, hence we
also know that the global property for ¥, is satisfied. This means that €5 is a P-CT
that starts with #g,(¢) and with |Ta|pear < 1. This is our desired contradiction,
which proves the induction step for the first case.

(2) In the second case, there exists an annotation at a position 7, which is strictly
above all other annotated positions. We do a similar construction as in the first
case by considering the sets of positions &1 = posp«(t) \ {7} and $5 = {7}, and
consider the two terms #g, (t) and #4,(t), which contain both strictly less than n
annotations. The rest of the proof is analogous to the first case. O

Now we show soundness and completeness for all processors.

Theorem 14 (Prob. Dep. Graph Processor). For the SCCs Py, ..., Py of the
P-dependency graph, Procoe(P)={P1 Ub(P\ P1),...., Pn Ub(P\ Pn)} is sound and
complete.

Proof. Let X = X Ub(P\ X) for X C P.

Completeness

Every P;-CT is also a P-CT with fewer annotations in the terms. So if some P; is
not iAST, then there exists a P;-CT ¥ that converges with probability < 1. By

adding annotations to the terms of the tree, we result in a P-CT that converges
with probability < 1 as well. Hence, if P; is not iAST, then P is not iAST either.

Soundness

Let & be the P-dependency graph. Suppose that every P;-CT converges with
probability 1 for all 1 < i < n. We prove that then also every P-CT converges with
probability 1. Let W = {P1,..., P} U{{v} C P | v is not in an SCC of &} be the
set of all SCCs and all singleton sets of nodes that do not belong to any SCC. The
core steps of this proof are the following:

1. We show that every ADP problem X with X € W is iAST.
2. We show that composing SCCs maintains the iAST property.
3. We show that for every X € W, the ADP problem UX>%Y Y is iAST by

induction on >g.
4. We conclude that P must be iAST.

Here, for two X7, Xy € W we say that X, is a direct successor of X; (denoted
X1 >@ Xo) if there exist nodes v € X; and w € X5 such that there is an edge
from v to w in &.

1. Every ADP problem X with X € W is iAST.
We start by proving the following:

Every ADP problem X with X € W is iAST. (21)

To prove (21), note that if X is an SCC, then it follows from our assumption that
X is iAST. If X is a singleton set of a node that does not belong to any SCC,

A Complete DP Framework for iAST of PTRSs 31

then assume for a contradiction that X is not iAST. By Lemma 34 there exists an
X-CT T = (V,E, L, P) that converges with probability < 1 and starts with (1 : t)
where b(t) = sf € ANFp for a substitution 6 and some ADP s — {p1 : 71,...,pg :
re}™ € X, and posp#(t) = {e}. If s — ... ¢ X, then the resulting terms after
the first rewrite step contain no annotations anymore and this cannot start a CT
that converges with probability < 1. Hence, we have s — ... € X. Assume for a
contradiction that there exists a node € P in ¥ that is not the root and introduces
new annotations. W.l.o.G., let be reachable from the root without traversing
any other node from P. This means that for the corresponding term ¢, for node x
there is a ¢ <y ¢, such that b(t') = so’ € ANFp for some substitution o’ and the
only ADP s — ... € X (which is the only ADP that contains any annotations in
the right-hand side). Let (2o, ..., zm) with z,, = x be the path from the root to
x in T. The first rewrite step at the root must be sf ci—>y {p1:7m0,...,px : T10}.
After that, we only use steps at non-annotated positions in the path since all the
nodes z1,...,2zm_1 are contained in R. Therefore, we must have an 1 < j < k and
a t"” dy rj such that # . (t")0 %:p(P) #(-1(s)o’, which means that there must
be a self-loop for the only ADP in X, which is a contradiction to our assumption
that X is a singleton consisting of an ADP that is not in any SCC of &.

Now, we have proven that the X-CT ¥ does not introduce new annotations.
By definition of a P-CT, every infinite path must contain an infinite number of
nodes in P, i.e., nodes where we rewrite at an annotation. Thus, every path in ¥
must be finite, which means that ¥ is finite itself. But every finite CT converges
with probability 1, which is a contradiction to our assumption that T converges
with probability < 1.

2. Composing SCCs maintains the iAST property.
Next, we show that composing SCCs maintains the iAST property. More precisely,
we prove the following:

Let X C W and Y C W such that there are no Xy, Xo eEXand YeY
which satisfy both X; >§ Y >§ Xo and Y € X, and such that there are
no Y1, Y; €Y and X € X which satisfy both Y] > X >k Yz and X ¢ V. If
both Uycx X and Uy oy Y are iAST, then (Jy ¢ X UUy g Y is 1AST.

(22)

To show (22), we assume that both |Jy. ¢ X and Uyoy Y are iAST. Let Z =

Uxex X UUyey Y. The property in (22) for X and Y says that a path between
two nodes from |J xex X that only traverses nodes from Z must also be a path
that only traverses nodes from (Jy.¢ X, so that |Jy .y Y cannot be used to
“create” new paths between two nodes from (J cx X, and vice versa. Assume for a
contradiction that Z is not iAST. By Lemma 34 there exists a Z-CT T = (V, E, L, P)
that converges with probability < 1 and starts with (1 : ¢) where b(t) = sf € ANFp
for a substitution § and an ADP s — ... € Z, and pospx« (t) = {¢}.

Ifs — ... ¢ Uxex XUUy ey Y, then the resulting terms contain no annotations
anymore and this cannot start a CT that converges with probability < 1. W.l.o.g.,
we may assume that the ADP that is used for the rewrite step at the root is in
Uxex X. Otherwise, we simply swap |y ¢ X with [Jy .y Y in the following.

We can partition the set P of our Z-CT ¥ into the sets

32 A Complete DP Framework for iAST of PTRS

e P :={x € P| x together with the labeling and its successors represents a step
with an ADP from (J, ¢ X}
[] P2 =P \ P1

Note that in the case of x € P, we know that = together with its successors and
the labeling represents a step with an ADP from P\ Uy X. We know that

every Jy ¢y Y-CT converges with probability 1, since [, oy Y is iAST. Thus, also

every Uy ¢y Y \ Uxex X-CT converges with probability 1 (as it contains fewer
annotations than (Jy .y Y). Furthermore, we have |T|.ear < 1 by our assumption.
By the P-Partition Lemma (Lemma 33) we can find a grounded sub Z-CT T’ =
(V' E', L', P") with |%'|Lcas < 1 such that every infinite path has an infinite number
of Pj-edges. Since ¥’ is a grounded sub-CT of ¥ it must also start with (1 : ¢).
We now construct a | J . ¢ X-CT 7 = (V', E',L", Py N P’) that has the same
underlying tree structure and adjusted labeling such that all nodes get the same
probabilities as in ¥’. Since the tree structure and the probabilities are the same,
we then get |3'|Leas = |T"|Leas. TO be precise, the set of leaves in T’ is equal to the
set of leaves in T/, and every leaf has the same probability. Since |T'|rear < 1 we

thus have |T”|Lear < 1, which is a contradiction to our assumption that |y ¢ X
is 1AST.

Fig. 2: Construction for this proof. Every node z € P, in ¥’ is removed from P,
which yields €.

The core idea of this construction is that annotations introduced by rewrite
steps at a node x € P5 are not important for our computation. The reason is that
if annotations are introduced using an ADP from (J, .y Y that is not contained
in [Jycx X, then by the prerequisite of (22), we know that such an ADP has no
path in the dependency graph to an ADP in (¢ X. Hence, by definition of the
dependency graph, we are never able to use these terms for a rewrite step with
an ADP from J cx X to introduce new annotations. We can therefore apply the
non-annotated ADP from Jy .y Y to perform the rewrite step.

We now construct the new labeling L” for the [J . ¢ X-CT T recursively. Let
Q@ C V be the set of nodes where we have already defined the labeling L”. During

A Complete DP Framework for iAST of PTRSs 33

our construction, we ensure that the following property holds:

For every z € Q we have t/, = /! and pospy () \ Junk(t,,, X) C posps (7). (23)
Here, for any term ¢/, let Junk(t,,, X) denote the positions of all annotated subterms
s <y t!, that can never be used for a rewrite step with an ADP from X , as indicated
by the dependency graph. To be precise, we define 7 € Junk(t,, X):< there is
no A e W with A >§ X for some X € X such that there is an ADP £ — {p; :
T1,.. Pk TR} € A, and a substitution o with # .y (), |~) i—>;p(7,) #(3(0)o, and
lo € ANFp.

We start by setting ¢/ = ¢, for the root v of ¥’. Here, our property (23) is clearly
satisfied. As long as there is still an inner node = € @ such that its successors are
not contained in @, we do the following. Let zF = {y1,...,yx} be the set of its

successors. We need to define the corresponding terms for the nodes y, ..., yx in
%", Since z is not a leaf and ¥’ is a Z-CT, we have t/, <'—>7 {I;‘# A I;# tty b

and hence, we have to deal with the following two cases:

L. If we use an ADP from (Jy ¢ X in ¥', then we perform the rewrite step with
the same ADP, the same position 7, and the same substitution in ”. Since we
have t, =rp) ti;, we also get t;j = t;’j for all 1 < j < k. Furthermore, since we
rewrite at position 7 it cannot be in Junk(t,, X), and hence, if 7 € pospx (t,),
then also m € pospx(¢)) by (23). Thus, whenever we create annotations in
the rewrite step in ¥’ (a step with (P) or (PR)), then we do the same in T"
(the step is also a (P) or (PR) step, respectively), and whenever we remove
annotations in the rewrite step in " (a step with (P) or (IRR)), then we do
the same in ¥’ (the step is also either a (P) or (IRR) step). Therefore, we also
get pospx (1) \Junk(t’yj,X) C pospx(ty,) for all 1 < j < k and (23) is again
satisfied.

2. If we use an ADP from P\ [y .z X in T, and we use the ADP £ — {p; :
T1,...,Dk : Tk}™, then we can use £ — {p1 : b(r1),...,pr : b(rg)}™ instead,
with the same position 7, and the same substitution. Note that if 7 € posp# (t),),
then all the annotations introduced by the ADP are in Junk(t;j,X) for all
1 < j <k, since the used ADP is not in |y ¢ X and by (22) we cannot use
another ADP to create a path in the dependency graph to a node in (Jy ¢ X
again. Otherwise, we remove the annotations during the application of the rule
anyway. Again, (23) is satisfied.

We have now shown that (22) holds.

3. For every X € W, the ADP problem (Jy.., Y is iAST.
&
Using (21) and (22), by induction on > we now prove that

for every X € W, the ADP problem UX>,&Y Y is iAST. (24)

Note that > is well founded, since & is finite.

For the base case, we consider an X € W that is minimal w.r.t. >¢. Hence, we
have UX>%YY = X. By (21), X is iAST.

34 A Complete DP Framework for iAST of PTRS

For the induction step, we consider an X € W and assume that UY>Z; 4 2 is

iAST for every Y € W with X >& V. Let Succ(X) ={Y e W | X > Y} =
{Y1,...Y,,} be the set of all direct successors of X. The induction hypothesis states
that UYu>gZ 7 is iAST for all 1 < u < m. We first prove by induction that for all

1<u<m, Ulgigu UYi>gZZ is 1AST.

In the inner induction base, we have u = 1 and hence ;< Uy, o+, Z =
<i<u VYi>y

UY1>gZ Z. By our outer induction hypothesis we know that UY1>gZ Z is iAST.

In the inner induction step, assume that the claim holds for some 1 < u < m.
Then UYu+1>gZ Z is iAST by our outer induction hypothesis and

Ulgigu UYI_>*@Z 7 i81AST by our inner induction hypothesis. By (22), we know that

then U <icis UYi>’@,Z Z is 1AST as well. The conditions for (22) are clearly satis-
fied, as we wuse the vreflexive, transitive closure >3 in both
Ulgigu UY,-,>;Z Z and UYu+1>gz Z.

Now we have shown that (J;;,, UYL>:§§,Z Z is 1AST. We know that X is iAST
by our assumption and that (J; <, UYD%Z Z is 1AST. Hence, by (22) we obtain
that UX>*®Y Y iAST. Again, the conditions of (22) are satisfied, since X is strictly
greater w.r.t. >JQg than all Z with Y; >5 Z.

4. P is iAST.
In (24) we have shown that UX>:;5Y Y for every X € W is iAST. Let X4,...,X,,

€ W be the maximal elements of W w.r.t. >g. By induction, one can prove that
Ui<i<u Uxi>gY Y is 1AST for all 1 < u < m by (22), analogous to the previous

induction. Again, the conditions of (22) are satisfied as we use the reflexive,
transitive closure of >. In the end, we know that J, -, ,, UXD*@Y Y =P isiAST
and this ends the proof. O

Theorem 16 (Usable Terms Processor). Let ¢4 € T (X,V) and P be an
ADP problem. We call t € T (X#,V) with root(t) € D¥ usable w.r.t. {; and
P if there are substitutions o1,02 and an o — us € P where us contains an
annotated symbol, such that #.(t)oy i—>flp(7,) #.(l3)oa and both ¢101 and laos are
in ANFp. Let by p(s) be the variant of s where all annotations of those subterms
of s are removed that are not usable w.r.t. £ and P. The transformation that
removes all annotations from non-usable terms in the right-hand sides of ADPs
is Tor(P)={l—{p1 :bep(r1),- - ok bep(ri) }™ [£—={p1 171, p 7} EPF
Then Procyr(P) = {Tur(P)} is sound and complete.

Proof.

Completeness

Every Tur(P)-CT is also a P-CT with fewer annotations in the terms. So if Tyr(P)
is not 1AST, then there exists a Tyr(P)-CT ¥ that converges with probability < 1.
By adding annotations to the terms of the tree, we result in a P-CT that converges
with probability < 1 as well. Hence, if Tyr(P) is not 1AST, then P is not iAST
either.

A Complete DP Framework for iAST of PTRSs 35

Soundness
Let P be not iAST. Then by Lemma 34 there exists a P-CT ¥ = (V, E, L, P) that
converges with probability < 1 whose root is labeled with (1:¢) and b(t) = s €
ANFp for a substitution 8 and an ADP s — ... € P, and posp«(t) = {e}. We will
now create a Tyr(P)-CT T' = (V, E, L’ , P), with the same underlying tree structure,
and an adjusted labeling such that py = pg for all z € V. Since the tree structure
and the probabilities are the same, we then get |T'|Lear = |T|rear < 1, and hence
Tor(P) is not 1AST either.

We now construct the new labeling L’ for the Tyr(P)-CT T’ recursively. Let
X C V be the set of nodes where we have already defined the labeling L’. During
our construction, we ensure that the following property holds for every node = € X:

For every z € X we have ¢, =t and pospx (t;) \ Junk(t,) C posp«(t,). (25)

Here, for any annotated term t¢,, let Junk(¢,) denote the set of all positions of
annotations in ¢, that will never be used for a rewrite step in . To be precise,
we define Junk(t,) recursively: For the term ¢ at the root, we define Junk() =@.

For a node y; for some 1 < j < h with predecessor x such that t, <, {I;’; :

byrs oo % i ty, } at a position 7, we define Junk(t,;) = {p | p € Junk(t,), 7 £ p}

if m ¢ posps (t2), and otherwise, we define Junk(t,;) = {p | p € Junk(t,), ™ £ p} U
Junk((¢)+,‘E) Here, we have p € Junk((¢)+,‘S), if p=71.7" and 7’ € posp«(7;),
for the used ADP ¢ — {p1 : 71,...,Pn : Pn}™, and there is no (not necessarily
direct) successor node in T that rewrites at position p without rewriting above
position p before.

We start with the same term ¢ at the root. Here, our property (25) is clearly
satisfied. As long as there is still an inner node x € X such that its successors are
not contained in X, we do the following. Let E = {y1,...,yr} be the set of its
successors. We need to define the terms for the nodes yi,...,yx in .

Since z is not a leaf and T is a P-CT, we have t, <, {pyl Slypy s % Sty b
If we performed a step with <—>7, using the ADP ¢ — {p1 : r1,...,pg : T, }™, the
position 7, and the substitution o in ¥, then we can use the ADP ¢ — {p; :
bep(r1),. .. Dk 2 bep(rk)}™ with the same position 7 and the same substitution
0. Now, we directly get t,; =) and posps(ty;) \ Junk(ty,) C pospx () for all
1 < j < k since the original rule contains the same terms with more annotations, but
all missing annotations are in Junk(¢;) by definition of by p(r;) for each 1 < j < k.

O

Theorem 17 (Probabilistic Usable Rules Processor). Let P be an ADP
problem. For every f € X% let Rulesp(f) = {¢ — pu™ € P | root(f) = f}. For
any term t € T(Z#,V), its usable rules Up(t) are the smallest set such that
Up(z) = @ for all z € V and Up(f(t1,...,tn)) = Rulesp(f) U U, Up(t;) U
Uy eRutesp (1),resupp(u) UP (0(7)), otherwise. The usable rules for P are U(P) =

U@HumEP,TESupp(u),tﬂ#rZ/{P(#{E}(t>)' Then Procyg(P) = {U(P)U{l — pfalse | £ —
p™ € P\U(P)}} is sound and complete, i.e., we turn the flag of all non-usable
rules to false.

Proof. Let P =U(P)U{l — pfle | ¢ — ™ € P\U(P)}.

36 A Complete DP Framework for iAST of PTRS

Completeness

Every P-CT is also a P-CT with fewer annotations in the terms. So if P is not
iAST, then there exists a P-CT ¥ that converges with probability < 1. By adding
annotations into the terms of the tree, we result in a P-CT that converges with
probability < 1 as well. Hence, if P is not iAST, then P is not iAST either.

Soundness
Assume that P is not iAST. Then by Lemma 34 there exists a P-CT ¥ = (V, E, L, P)
that converges with probability < 1 whose root is labeled with (1 :¢) and b(¢) =
s0 € ANFp for a substitution 6 and an ADP s — ... € P, and pospx (t) = {e}.
By the definition of usable rules, as in the non-probabilistic case, rules £ — € P
that are not usable (i.e., £ — pu & P) will never be used below an annotated symbol
in such a P-CT. Hence, we can also view T as a P-CT that converges with
probability < 1 and thus P is not iAST. O

Theorem 19 (Probabilistic Reduction Pair Processor). Let Pol: T (X%,
V) — N[V] be a weakly monotonic, multilinear polynomial interpretation. Let
P =P> P such that:

(1) For every £ — {p1 : 7r1,...,pk : 1 1™ € P, we have
Pol(¢) > Z1gj§kpj - Pol(b(ry)).
(2) For every £ — {p1 :r1,...,pk : 16 }™ € P, we have
Pol(#cy(0)) = X1 <j<i Pi * Dpa,r, POLF# (1 (1)).
(8) For every £ — {p1 : r1,...,pk : ri}t™ € P>, there exists a 1 < j < k with
Pol(#c}(€)) > X ya,r, Pol(#(e3 (1))
If m = true, then we additionally have Pol(£) > Pol(b(r;)).

Then Procge(P) = {P> Ub(P>)} is sound and complete.

Proof. Let P = P> Ub(Ps).

Completeness

Every P-CT is also a P-CT with fewer annotations in the terms. So if P is not
iAST, then there exists a P-CT ¥ that converges with probability < 1. By adding

annotations to the terms of the tree, we result in a P-CT that converges with
probability < 1 as well. Hence, if P is not iAST, then P is not iAST either.

Soundness
This proof uses the proof idea for AST from [31]. The core steps of the proof are
the following;:

(I) We extend the conditions (1), (2), and (3) to rewrite steps instead of just rules
(and thus, to edges of a CT).

(IT) We create a CT TV for any N € N.

(ITII) We prove that |T<N|peas > pN. for any N € N.

(IV) We prove that |[T<V| s = 1 for any N € N.

(V) Finally, we prove that |T|Lear = 1.

Parts (II) to (V) remain completely the same as in [26]. We only show that we can
adjust part (I) to our new rewrite relation and new annotated dependency pairs.

A Complete DP Framework for iAST of PTRSs 37

(I) We extend the conditions to rewrite steps instead of just rules

We set V(s) = >, Pol(#¢()), and show that the conditions (1), (2), and (3)
of the lemma extend to rewrite steps instead of just rules:

(a)

If s 5 {p1 : t1,...,pr : 1} using a rewrite rule £ — {py : r1,...,pr : Tk}
with Pol(£) > Pol(r;) for some 1 < j <k, then we have Pol(s) > Pol(t;).
Ifa<i—>7, {p1:b1,...,pk : b} using the rule £ — {py : r1,...,pr : rp}™ € P>
at a position m € posp«(s), then V(a) > V(b;) for some 1 < j < k.

If s = {p1 : t1,...,pr : 1} using a rewrite rule £ — {p1 : 71,...,pr : T}
with Pol(£) > 7, <<, pj - Pol(r;), then Pol(s) > >7, ;. p; - Pol(t;).

If a =p {p1:b1,...,p : b} using the rule £ — {p1 : r1,...,pp : 76}™ € P,
then V(a) > Z1§jgkpj -V (bj).

In this case, there exist a rule £ — {p1 : r1,...,pg : 7%} with Pol(¢) > Pol(r;)
for some 1 < j < k, a substitution o, and a position 7 of s such that s|, =
lo € ANFp, and t; = s[rjol, forall 1 <j < k.

We perform structural induction on 7. So in the induction base, let 7 = €.
Hence, we have s = lo - {p; : r10,...,py : 70} By assumption, we have
Pol(¢) > Pol(r;) for some 1 < j < k. As these inequations hold for all
instantiations of the occurring variables, for t; = r;o we have

Pol(s) = Pol(¢o) > Pol(r;o) = Pol(t;).

In the induction step, we have 7 = i.7’, s = f(81,...,54,...,5n), f € X, 5; —
{pl : ti71, ey Pk tuk}, and tj = f(Sl, ce ,ti,j, ey Sn) with ti,j = Si[T‘jO'}ﬂ—/ for
all 1 < j < k. Then by the induction hypothesis we have Pol(s;) > Pol(t; ;).
For t; = f(s1,...,tij,...,Sn) We obtain

Pol(s) = Pol(f(S1,...,Siy.--,5n))
= fPOl(POl(81)7 s 7P01(8i)7 s 7P01(5n))
> froi(Pol(s1),...,Pol(t; ;),...,Pol(sy))
(by weak monotonicity of fpo and Pol(s;) > Pol(t; ;))
= POl(f(Sl, ce ,ti’j, ey Sn))

In this case, there exist an ADP ¢ — {py : r1,...,px : 7t }™ € P> with m = true,
a substitution o, and position © € pospx(a) with b(a|.) = fo € ANFp and
b; = a[rjo]y. Let I = pospx(a) N {7 | 7 < 7} be the set of positions of
all annotations strictly above 7, Iy = pospx(a) N {7 | 7 > 7} be the set of
positions of all annotations strictly below 7, and let I3 = pospx(a)N{7 | 7L7}
be the set of positions of all annotations orthogonal to 7. Furthermore, for each
i € I1 let 7; be the positions such that i.; = m. By Requirement (3), there
exists a 1 < j < k with Pol(#.}(£)) > 3.4, Pol(#{-}(t)) and, additionally,
Pol(¢) > Pol(b(r;)) if m = true. As these inequations hold for all instantiations
of the occurring variables, we have

38 A Complete DP Framework for iAST of PTRS

V(a) = ng#a Pol(#<1(s))
= Pol(#ey (sl)) + Zicr, Pol(#(ey(ali)) + 3y cp, Pol(#(ey(alyr)) + 3 ¢ gy Pol(#(ey (alir))
> Pol(#(cy(slx)) + 22icq, Pol(# ey (ali)) + 305 ¢ 1y Pol(#ey (alir))
= Pol(#{cy (£)0) + 3y, Pol(#(cy(ali)) + 2 p, Pol(#(cy(alyr))
(as # ey (s]x) = # (1 (D)o)
> Yy, POlF# ey (8)9) + 20 er, Pol(# ey (ali)) + 2y epy Pol(#(ey (alir))
(as Pol(# 3 (4)) > ZSS‘#M Pol(# (¢} (s)), hence Pol(# () ()o) > Esg#r] Pol(# 3 (s)o))
> Zsﬂ#b]‘\w POI(#{E}(S)) + Z'iell POI(#{E}(““[TJ‘”]H)) + Zi’elg PO](#{e}(a|i’))
(by Pol(£) > Pol(r;) and (a))
= Zﬁﬂ#bj POI(#{a}(S))
= V(b;)

In case of m = false we additionally remove) ;. Pol(#(.}(ali[r;0]-,)), so
that the inequation remains correct.

(c) In this case, there exists a rule £ — {p; : r1,...,px : 7} with Pol(¢) >
> 1<j<k Pj - Pol(r;), a substitution o, and a position 7 of s such that s[, =
lo € ANFp, and tp, = s[rpo], for all 1 < h < k.
We perform structural induction on 7. So in the induction base m = ¢ we have
s=Vlo 5 {py:710,...,pp TR0 }. As Pol(¢) > >_1<j<i pj - Pol(r;) holds for all
instantiations of the occurring variables, for ¢; = r;o we obtain

Pol(s) = Pol(¢o) > Z pj - Pol(rjo) = Z p; - Pol(t;).
1<j<k 1<j<k

In the induction step, we have m = 0.7/, § = f(S1,...,5i,---,5n), 5 — {p1 :
ti,h ey PE ti,k:}a and tj = f(Sl, [SPN ati,j7 ey Sn) with ti,j = Si[’/‘ja]ﬂ-/ for all 1 <
j < k. Then by the induction hypothesis we have Pol(s;) > >, - ;). pj-Pol(t; ;).
Thus, we have

Pol(s) = Pol(f(s1,-..,Siy.--,5n))
= fpor(Pol(s1),...,Pol(s;),...,Pol(sy,))
2 fpol(POI(Sl), ey Zlgjgkpj . POl(tiJ), e 7PO](Sn))
(by weak monotonicity of fpor and Pol(s;) > >, pj - Pol(t; ;)
= Zlgjgkpj . fPOI(POI(Sl), e 7P01(ti7j), . 7POI(SH))
(as fpol is multilinear)
= Z1§j§kpj “Pol(f(s1,---stijs---s8n))
= Zlgjgkpj . POl(t])

(d) In this case, there exist an ADP ¢ — {p;1 : r1,...,px : 7t }™ € P, a substitution
o, and position 7 with b(a|r) = ¢o € ANFp and b; = a[rjo].. Let I =
pospx(a) N {7 | 7 < 7w} be the set of positions of all annotations strictly above
m, Is = pospx (a) N{7 | 7 > 7} be the set of positions of all annotations strictly
below 7, and let I3 = pospx(a) N {7 | 7L7} be the set of positions of all
annotations orthogonal to 7. Furthermore, for each i € I; let 7; be the position
such that i.7; = 7. By Requirement (2), we have Pol(# 1 (€)) > >°1 <<, p; -
>t<,r; Pol(#}(t)) and by (1) we have Pol(¢) = 3, ;. pj - Pol(b(r;)). As
these inequations hold for all instantiations of the occurring variables, we have

A Complete DP Framework for iAST of PTRSs 39

Pol(# ey (alx)) + ;e 1, Pol(# ey (ali)) + i ep, Pol(# ey (ali)) + 35 ¢ 1y Pol(# 2y (alir))
=)+ Xier, Pol(#(ey(ali)) + Xy r, Pol(#¢ey (alir))
o)+ 2Xicr, Pol(#iey(ali)) + 35 ¢ gy Pol(#ey(alir))
(as a|lr = # (3 (0)o)
2 2ii<nPi Liayrjo POIFH (3 () + Xier) Pol(# ey (ali)) + 2y e, Pol(# ey (alir))
(by Pol(#(e}(0)) 2 Zi<j<u Pi " Deayr; POlF# (1 (1),
hence Pol(# (.} (£)o) > Z1gjgk Py Ztﬂ#r.ﬂ’ Pol(#3(1)))
> Z1§jgk P; Ztﬂ#/rjg PO](#{E}(t)) + Zie]l Z1§j§k pj - POI(#{E}(a‘i[TjU]Ti))
+2 i ery Pol(#¢ey (alin))
(by Pol(£) > 3=, < j< pj - Pol(r;) and (c))
= Z1§j§k pj - Ztg#”a PO](#{E}(t)) + Z1§J§k 27‘,511 pj - POl(#{s}(a‘i[Tjg]Ti))
+ Zq‘,’el?, Pol(#¢<y (al;r))
= Elgjgk bj - Ztg#rjg Pol(# (<1 (1)) + Zlgjgk pj - Ziell Pol(#(cy(ali[rjol-;))
+ 21/513 POI(#{E} (a|7‘,’))
=21<j<kPi- Ztﬂ#rja Pol(#(c1 (1) + 21<j<k Pi - 2oier, POlF# (1 (alilr;ols;))
+ 2 i<i<kPi- Zi’ezg Pol(#¢cy(al;r))
= Dagyi<nPi Biayrjo PolF# (o3 (8) + L, Pol(#(ey(alilrjoln)) + 325 e ry Pol(# 1 (alir)))
= Zlgjgk pj - Ztg#bj POl(#{E}(t))
= V(bj)

IVl

Via) = Xiaya POl# (e} (1))
\
\

(
Pol(#(c)(a
(¢

= Pol(#(<}

In case of 7 ¢ posp#(a), we remove Ztﬂ#rjg Pol(#3(t)) in the end, and in
case of m = false we remove), Pol(#.}(ali[rjols,)).

The rest is completely analogous to the proof in [26]. O

Finally, we prove soundness of the new rewriting processor.

Theorem 23 (Soundness of the Rewriting Processor). Proc, as in Def. 22
is sound if one of the following cases holds:

1. Up(r;j|;) is NO, and the rule used for rewriting r;j|, is L and NE.

2. Up(rj|+) is NO, and all its rules have the f